Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2010, Volume 164, Number 3, Pages 333–353
DOI: https://doi.org/10.4213/tmf6543
(Mi tmf6543)
 

This article is cited in 5 scientific papers (total in 5 papers)

Zero level of a purely magnetic two-dimensional nonrelativistic Pauli operator for spin-$1/2$ particles

P. G. Grinevicha, A. E. Mironovb, S. P. Novikovc

a Landau Institute for Theoretical Physics, RAS, Chernogolovka, Moscow Oblast, Russia
b Sobolev Institute for Mathematics, Siberian Branch, RAS, Novosibirsk, Russia
c University of Maryland, College Park, USA
Full-text PDF (638 kB) Citations (5)
References:
Abstract: We study the manifold of complex Bloch–Floquet eigenfunctions for the zero level of a two-dimensional nonrelativistic Pauli operator describing the propagation of a charged particle in a periodic magnetic field with zero flux through the elementary cell and a zero electric field. We study this manifold in full detail for a wide class of algebraic-geometric operators. In the nonzero flux case, the Pauli operator ground state was found by Aharonov and Casher for fields rapidly decreasing at infinity and by Dubrovin and Novikov for periodic fields. Algebraic-geometric operators were not previously known for fields with nonzero flux because the complex continuation of “magnetic” Bloch–Floquet eigenfunctions behaves wildly at infinity. We construct several nonsingular algebraic-geometric periodic fields (with zero flux through the elementary cell) corresponding to complex Riemann surfaces of genus zero. For higher genera, we construct periodic operators with interesting magnetic fields and with the Aharonov–Bohm phenomenon. Algebraic-geometric solutions of genus zero also generate soliton-like nonsingular magnetic fields whose flux through a disc of radius $R$ is proportional to $R$ (and diverges slowly as $R\to\infty$). In this case, we find the most interesting ground states in the Hilbert space $L_2(\mathbb R^2)$.
Keywords: two-dimensional Pauli operator, one-energy problem, algebraic-geometric solution, nonzero magnetic flux, ground state, Bloch–Floquet manifold, Aharonov–Bohm effect.
English version:
Theoretical and Mathematical Physics, 2010, Volume 164, Issue 3, Pages 1110–1127
DOI: https://doi.org/10.1007/s11232-010-0089-0
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: P. G. Grinevich, A. E. Mironov, S. P. Novikov, “Zero level of a purely magnetic two-dimensional nonrelativistic Pauli operator for spin-$1/2$ particles”, TMF, 164:3 (2010), 333–353; Theoret. and Math. Phys., 164:3 (2010), 1110–1127
Citation in format AMSBIB
\Bibitem{GriMirNov10}
\by P.~G.~Grinevich, A.~E.~Mironov, S.~P.~Novikov
\paper Zero level of a~purely magnetic two-dimensional nonrelativistic Pauli operator for spin-$1/2$ particles
\jour TMF
\yr 2010
\vol 164
\issue 3
\pages 333--353
\mathnet{http://mi.mathnet.ru/tmf6543}
\crossref{https://doi.org/10.4213/tmf6543}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...164.1110G}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 164
\issue 3
\pages 1110--1127
\crossref{https://doi.org/10.1007/s11232-010-0089-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000282695500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77957977674}
Linking options:
  • https://www.mathnet.ru/eng/tmf6543
  • https://doi.org/10.4213/tmf6543
  • https://www.mathnet.ru/eng/tmf/v164/i3/p333
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024