Abstract:
We study the effects of electromagnetic fields on nonrelativistic charged spinning particles bound by a short-range potential. We analyze the exact solution of the Pauli equation for an electron moving in the potential field determined by the three-dimensional δ-well in the presence of a strong magnetic field. We obtain asymptotic expressions for this solution for different values of the problem parameters. In addition, we consider electron probability currents and their dependence on the magnetic field. We show that including the spin in the framework of the nonrelativistic approach allows correctly taking the effect of the magnetic field on the electric current into account. The obtained dependences of the current distribution, which is an experimentally observable quantity, can be manifested directly in scattering processes, for example.
Keywords:
bound electron, magnetic field, current probability distribution.
Citation:
V. N. Rodionov, G. A. Kravtsova, A. M. Mandel', “Wave function and the probability current distribution for a bound electron moving in a uniform magnetic field”, TMF, 164:1 (2010), 157–171; Theoret. and Math. Phys., 164:1 (2010), 960–971
\Bibitem{RodKraMan10}
\by V.~N.~Rodionov, G.~A.~Kravtsova, A.~M.~Mandel'
\paper Wave function and the~probability current distribution for a~bound electron moving in a~uniform magnetic field
\jour TMF
\yr 2010
\vol 164
\issue 1
\pages 157--171
\mathnet{http://mi.mathnet.ru/tmf6530}
\crossref{https://doi.org/10.4213/tmf6530}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...164..960R}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 164
\issue 1
\pages 960--971
\crossref{https://doi.org/10.1007/s11232-010-0076-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000280650600010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77955286006}
Linking options:
https://www.mathnet.ru/eng/tmf6530
https://doi.org/10.4213/tmf6530
https://www.mathnet.ru/eng/tmf/v164/i1/p157
This publication is cited in the following 11 articles:
Mandel A.M., Oshurko V.B., Pershin S.M., “A Thin Semiconductor Quantum Ring as An Analog of a Magnetically Controlled Bohr Atom”, Dokl. Phys., 66:9 (2021), 253–256
Mandel' A. M., Oshurko V.B., Karpova E.E., “Renormalization of the Lande Factor and Effective Mass in Small Spherical Quantum Dots”, J. Commun. Technol. Electron., 64:10 (2019), 1127–1134
Quantum Electron., 48:1 (2018), 49–56
Mandel' A. M. Oshurko V.B. Solomakho G.I. Solomakho K.G. Veretin V.S., “Regularization of One-Electron Quasi-Steady States in Ideal Quantum Dots in the Electric Field”, J. Commun. Technol. Electron., 63:2 (2018), 173–179
A. M. Mandel', V. B. Oshurko, G. I. Solomakho, K. G. Solomakho, “Ideal Quantum Wires in a Magnetic Field: Self-Organization Energy, Critical Sizes, and Controllable Conductivity”, J. Commun. Technol. Electron., 63:3 (2018), 245
A. M. Mandel, V. B. Oshurko, S. G. Veselko, K. G. Solomakho, S. M. Pershin, A. A. Sharts, “g-Factor Calculation in Small Quantum Dots”, Bull. Lebedev Phys. Inst., 45:9 (2018), 282
A. M. Mandel', V. B. Oshurko, G. I. Solomakho, A. A. Sharts, “On the natural magnetization of ideal quantum dots and the possibility of detection of terahertz radiation in the magnetic field”, J. Commun. Technol. Electron., 60:10 (2015), 1117
S. N. Grigor'ev, A. M. Mandel', V. B. Oshurko, G. I. Solomakho, “Orbital and spin moments of one-electron states localized on quantum dots in a magnetic field”, J. Opt. Technol., 82:5 (2015), 274
S. N. Grigor'ev, A. M. Mandel', V. B. Oshurko, G. I. Solomakho, “On the possibility of creating single-electron states in quantum dots in a magnetic field for problems of optical quantum computations”, J. Opt. Technol., 82:5 (2015), 268
Rodionov V.N., Kravtsova G.A., “The Energy Level Shifts, Wave Functions and the Probability Current Distributions for the Bound Scalar and Spinor Particles Moving in a Uniform Magnetic Field”, Physics of Particles and Nuclei, 42:6 (2011), 895–910