Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2010, Volume 164, Number 1, Pages 157–171
DOI: https://doi.org/10.4213/tmf6530
(Mi tmf6530)
 

This article is cited in 11 scientific papers (total in 11 papers)

Wave function and the probability current distribution for a bound electron moving in a uniform magnetic field

V. N. Rodionova, G. A. Kravtsovab, A. M. Mandel'c

a Russian State Geological Prospecting University, Moscow, Russia
b Lomonosov Moscow State University, Moscow, Russia
c Moscow Aviation Institute (State Technical University), Moscow, Russia
References:
Abstract: We study the effects of electromagnetic fields on nonrelativistic charged spinning particles bound by a short-range potential. We analyze the exact solution of the Pauli equation for an electron moving in the potential field determined by the three-dimensional δ-well in the presence of a strong magnetic field. We obtain asymptotic expressions for this solution for different values of the problem parameters. In addition, we consider electron probability currents and their dependence on the magnetic field. We show that including the spin in the framework of the nonrelativistic approach allows correctly taking the effect of the magnetic field on the electric current into account. The obtained dependences of the current distribution, which is an experimentally observable quantity, can be manifested directly in scattering processes, for example.
Keywords: bound electron, magnetic field, current probability distribution.
Received: 18.11.2009
English version:
Theoretical and Mathematical Physics, 2010, Volume 164, Issue 1, Pages 960–971
DOI: https://doi.org/10.1007/s11232-010-0076-5
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. N. Rodionov, G. A. Kravtsova, A. M. Mandel', “Wave function and the probability current distribution for a bound electron moving in a uniform magnetic field”, TMF, 164:1 (2010), 157–171; Theoret. and Math. Phys., 164:1 (2010), 960–971
Citation in format AMSBIB
\Bibitem{RodKraMan10}
\by V.~N.~Rodionov, G.~A.~Kravtsova, A.~M.~Mandel'
\paper Wave function and the~probability current distribution for a~bound electron moving in a~uniform magnetic field
\jour TMF
\yr 2010
\vol 164
\issue 1
\pages 157--171
\mathnet{http://mi.mathnet.ru/tmf6530}
\crossref{https://doi.org/10.4213/tmf6530}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...164..960R}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 164
\issue 1
\pages 960--971
\crossref{https://doi.org/10.1007/s11232-010-0076-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000280650600010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77955286006}
Linking options:
  • https://www.mathnet.ru/eng/tmf6530
  • https://doi.org/10.4213/tmf6530
  • https://www.mathnet.ru/eng/tmf/v164/i1/p157
  • This publication is cited in the following 11 articles:
    1. Mandel A.M., Oshurko V.B., Pershin S.M., “A Thin Semiconductor Quantum Ring as An Analog of a Magnetically Controlled Bohr Atom”, Dokl. Phys., 66:9 (2021), 253–256  crossref  isi
    2. Mandel A.M., Oshurko V.B., Pershin S.M., Karpova E.E., Artemova D.G., “Tunable-Frequency Lasing on Thin Semiconductor Quantum Rings”, Dokl. Phys., 66:6 (2021), 160–163  crossref  isi
    3. Mandel' A. M., Oshurko V.B., Karpova E.E., “Renormalization of the Lande Factor and Effective Mass in Small Spherical Quantum Dots”, J. Commun. Technol. Electron., 64:10 (2019), 1127–1134  crossref  isi
    4. Quantum Electron., 48:1 (2018), 49–56  mathnet  crossref  isi  elib
    5. Mandel' A. M. Oshurko V.B. Solomakho G.I. Solomakho K.G. Veretin V.S., “Regularization of One-Electron Quasi-Steady States in Ideal Quantum Dots in the Electric Field”, J. Commun. Technol. Electron., 63:2 (2018), 173–179  crossref  isi  scopus
    6. A. M. Mandel', V. B. Oshurko, G. I. Solomakho, K. G. Solomakho, “Ideal Quantum Wires in a Magnetic Field: Self-Organization Energy, Critical Sizes, and Controllable Conductivity”, J. Commun. Technol. Electron., 63:3 (2018), 245  crossref
    7. A. M. Mandel, V. B. Oshurko, S. G. Veselko, K. G. Solomakho, S. M. Pershin, A. A. Sharts, “g-Factor Calculation in Small Quantum Dots”, Bull. Lebedev Phys. Inst., 45:9 (2018), 282  crossref
    8. A. M. Mandel', V. B. Oshurko, G. I. Solomakho, A. A. Sharts, “On the natural magnetization of ideal quantum dots and the possibility of detection of terahertz radiation in the magnetic field”, J. Commun. Technol. Electron., 60:10 (2015), 1117  crossref
    9. S. N. Grigor'ev, A. M. Mandel', V. B. Oshurko, G. I. Solomakho, “Orbital and spin moments of one-electron states localized on quantum dots in a magnetic field”, J. Opt. Technol., 82:5 (2015), 274  crossref
    10. S. N. Grigor'ev, A. M. Mandel', V. B. Oshurko, G. I. Solomakho, “On the possibility of creating single-electron states in quantum dots in a magnetic field for problems of optical quantum computations”, J. Opt. Technol., 82:5 (2015), 268  crossref
    11. Rodionov V.N., Kravtsova G.A., “The Energy Level Shifts, Wave Functions and the Probability Current Distributions for the Bound Scalar and Spinor Particles Moving in a Uniform Magnetic Field”, Physics of Particles and Nuclei, 42:6 (2011), 895–910  crossref  adsnasa  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:770
    Full-text PDF :319
    References:97
    First page:18
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025