Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2010, Volume 164, Number 1, Pages 88–107
DOI: https://doi.org/10.4213/tmf6526
(Mi tmf6526)
 

This article is cited in 9 scientific papers (total in 9 papers)

Entropic measure of the order–disorder character in lattice systems in the representation of coordination Cayley tree graphs

V. V. Yudin, P. L. Titov, A. N. Mikhalyuk

Far-East State University, Vladivostok, Russia
Full-text PDF (815 kB) Citations (9)
References:
Abstract: We systematically expound the infodynamical method for analyzing lattice and grid systems. We establish the logic and algorithm for mapping given objects to coordination Cayley tree graphs and present their main properties. Tree graphs of grid systems are complicated objects, and the principle of cluster-type simplicial decomposition can be used to study them. Based on a simplicial decomposition, we construct the enumerating structures, from which we construct entropy-type functionals. We pose the percolation problem on Cayley tree graphs in a nonconventional sense, which may be considered for both enumerating structures and their entropies. The corresponding entropy percolational dependences and their critical indices can be considered sufficiently universal measures of order in lattice systems. The simpliciality also implies an analogy with the fractality principle. We introduce three types of fractal characteristics and give analytic expressions for fractal dimensions for the tangential and streamer representations and for the Mandelbrot shell.
Keywords: generalized lattice system, coordination Cayley tree graph, simplicial decomposition, Weide entropy, Bongard divergence, long-range order, fractal dimension, extra-dimensional percolation.
Received: 16.07.2009
Revised: 17.12.2009
English version:
Theoretical and Mathematical Physics, 2010, Volume 164, Issue 1, Pages 905–919
DOI: https://doi.org/10.1007/s11232-010-0072-9
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: V. V. Yudin, P. L. Titov, A. N. Mikhalyuk, “Entropic measure of the order–disorder character in lattice systems in the representation of coordination Cayley tree graphs”, TMF, 164:1 (2010), 88–107; Theoret. and Math. Phys., 164:1 (2010), 905–919
Citation in format AMSBIB
\Bibitem{YudTitMik10}
\by V.~V.~Yudin, P.~L.~Titov, A.~N.~Mikhalyuk
\paper Entropic measure of the~order--disorder character in lattice systems in the~representation of coordination Cayley tree graphs
\jour TMF
\yr 2010
\vol 164
\issue 1
\pages 88--107
\mathnet{http://mi.mathnet.ru/tmf6526}
\crossref{https://doi.org/10.4213/tmf6526}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...164..905Y}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 164
\issue 1
\pages 905--919
\crossref{https://doi.org/10.1007/s11232-010-0072-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000280650600006}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77955289283}
Linking options:
  • https://www.mathnet.ru/eng/tmf6526
  • https://doi.org/10.4213/tmf6526
  • https://www.mathnet.ru/eng/tmf/v164/i1/p88
  • This publication is cited in the following 9 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:757
    Full-text PDF :372
    References:84
    First page:14
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024