Abstract:
We consider a system of three arbitrary quantum particles on a three-dimensional lattice that interact via short-range attractive potentials. We obtain a formula for the number of eigenvalues in an arbitrary interval outside the essential spectrum of the three-particle discrete Schrödinger operator and find a sufficient condition for the discrete spectrum to be finite. We give an example of an application of our results.
Citation:
M. I. Muminov, “Formula for the number of eigenvalues of a three-particle Schrödinger operator on a lattice”, TMF, 164:1 (2010), 46–61; Theoret. and Math. Phys., 164:1 (2010), 869–882
\Bibitem{Mum10}
\by M.~I.~Muminov
\paper Formula for the~number of eigenvalues of a~three-particle Schrödinger operator on a~lattice
\jour TMF
\yr 2010
\vol 164
\issue 1
\pages 46--61
\mathnet{http://mi.mathnet.ru/tmf6523}
\crossref{https://doi.org/10.4213/tmf6523}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...164..869M}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 164
\issue 1
\pages 869--882
\crossref{https://doi.org/10.1007/s11232-010-0069-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000280650600003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77955290906}
Linking options:
https://www.mathnet.ru/eng/tmf6523
https://doi.org/10.4213/tmf6523
https://www.mathnet.ru/eng/tmf/v164/i1/p46
This publication is cited in the following 3 articles:
Mukhiddin I. Muminov, S. K. Ghoshal, “Spectral Attributes of Self-Adjoint Fredholm Operators in Hilbert Space: A Rudimentary Insight”, Complex Anal. Oper. Theory, 13:3 (2019), 1313
M. I. Muminov, N. M. Aliev, “Discrete spectrum of a noncompact perturbation of a three-particle Schrödinger operator on a lattice”, Theoret. and Math. Phys., 182:3 (2015), 381–396
M. I. Muminov, T. H. Rasulov, “Infiniteness of the number of eigenvalues embedded in the essential spectrum of a 2×2 operator matrix”, Eurasian Math. J., 5:2 (2014), 60–77