Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2010, Volume 164, Number 1, Pages 46–61
DOI: https://doi.org/10.4213/tmf6523
(Mi tmf6523)
 

This article is cited in 3 scientific papers (total in 3 papers)

Formula for the number of eigenvalues of a three-particle Schrödinger operator on a lattice

M. I. Muminovab

a Samarkand State University, Samarkand, Uzbekistan
b Department of Mathematics, Dogus University, Istanbul, Turkey
Full-text PDF (452 kB) Citations (3)
References:
Abstract: We consider a system of three arbitrary quantum particles on a three-dimensional lattice that interact via short-range attractive potentials. We obtain a formula for the number of eigenvalues in an arbitrary interval outside the essential spectrum of the three-particle discrete Schrödinger operator and find a sufficient condition for the discrete spectrum to be finite. We give an example of an application of our results.
Keywords: discrete spectrum, essential spectrum, Schrödinger operator, positive operator, compact operator.
Received: 13.11.2009
Revised: 16.12.2009
English version:
Theoretical and Mathematical Physics, 2010, Volume 164, Issue 1, Pages 869–882
DOI: https://doi.org/10.1007/s11232-010-0069-4
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: M. I. Muminov, “Formula for the number of eigenvalues of a three-particle Schrödinger operator on a lattice”, TMF, 164:1 (2010), 46–61; Theoret. and Math. Phys., 164:1 (2010), 869–882
Citation in format AMSBIB
\Bibitem{Mum10}
\by M.~I.~Muminov
\paper Formula for the~number of eigenvalues of a~three-particle Schrödinger operator on a~lattice
\jour TMF
\yr 2010
\vol 164
\issue 1
\pages 46--61
\mathnet{http://mi.mathnet.ru/tmf6523}
\crossref{https://doi.org/10.4213/tmf6523}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...164..869M}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 164
\issue 1
\pages 869--882
\crossref{https://doi.org/10.1007/s11232-010-0069-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000280650600003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77955290906}
Linking options:
  • https://www.mathnet.ru/eng/tmf6523
  • https://doi.org/10.4213/tmf6523
  • https://www.mathnet.ru/eng/tmf/v164/i1/p46
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:565
    Full-text PDF :203
    References:85
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024