Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2010, Volume 163, Number 3, Pages 495–504
DOI: https://doi.org/10.4213/tmf6517
(Mi tmf6517)
 

This article is cited in 2 scientific papers (total in 2 papers)

Nonperturbative approach to finite-dimensional non-Gaussian integrals

Sh. R. Shakirov

Institute for Theoretical and Experimental Physics, Moscow, Russia
Full-text PDF (417 kB) Citations (2)
References:
Abstract: We study the homogeneous non-Gaussian integral $J_{n|r}(S)=\int e^{-S(x_1,\dots,x_n)}\,d^nx$, where $S(x_1,\dots,x_n)$ is a symmetric form of degree $r$ in $n$ variables. This integral is naturally invariant under $SL(n)$ transformations and therefore depends only on the invariants of the form. For example, in the case of quadratic forms, it is equal to the $(-1/2)$th power of the determinant of the form. For higher-degree forms, the integral can be calculated in some cases using the so-called Ward identities, which are second-order linear differential equations. We describe the method for calculating the integral and present detailed calculations in the case where $n=2$ and $r=5$. It is interesting that the answer is a hypergeometric function of the invariants of the form.
Keywords: non-Gaussian integral, Ward identity, theory of invariants.
English version:
Theoretical and Mathematical Physics, 2010, Volume 163, Issue 3, Pages 804–812
DOI: https://doi.org/10.1007/s11232-010-0064-9
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: Sh. R. Shakirov, “Nonperturbative approach to finite-dimensional non-Gaussian integrals”, TMF, 163:3 (2010), 495–504; Theoret. and Math. Phys., 163:3 (2010), 804–812
Citation in format AMSBIB
\Bibitem{Sha10}
\by Sh.~R.~Shakirov
\paper Nonperturbative approach to finite-dimensional non-Gaussian integrals
\jour TMF
\yr 2010
\vol 163
\issue 3
\pages 495--504
\mathnet{http://mi.mathnet.ru/tmf6517}
\crossref{https://doi.org/10.4213/tmf6517}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2730148}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...163..804S}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 163
\issue 3
\pages 804--812
\crossref{https://doi.org/10.1007/s11232-010-0064-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000280090300013}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954664616}
Linking options:
  • https://www.mathnet.ru/eng/tmf6517
  • https://doi.org/10.4213/tmf6517
  • https://www.mathnet.ru/eng/tmf/v163/i3/p495
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:415
    Full-text PDF :197
    References:66
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024