Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2010, Volume 163, Number 3, Pages 430–448
DOI: https://doi.org/10.4213/tmf6512
(Mi tmf6512)
 

This article is cited in 14 scientific papers (total in 14 papers)

Weyl–Eddington–Einstein affine gravity in the context of modern cosmology

A. T. Filippov

Joint Institute for Nuclear Research, Dubna, Moscow Oblast, Russia
References:
Abstract: We propose new models of the “affine” theory of gravity in multidimensional space–times with symmetric connections. We use and develop ideas of Weyl, Eddington, and Einstein, in particular, Einstein's proposed method for obtaining the geometry using the Hamilton principle. More specifically, the connection coefficients are determined using a “geometric” Lagrangian that is an arbitrary function of the generalized (nonsymmetric) Ricci curvature tensor (and, possibly, other fundamental tensors) expressed in terms of the connection coefficients regarded as independent variables. Such a theory supplements the standard Einstein theory with dark energy (the cosmological constant, in the first approximation), a neutral massive (or tachyonic) meson, and massive (or tachyonic) scalar fields. These fields couple only to gravity and can generate dark matter and/or inflation. The new field masses (real or imaginary) have a geometric origin and must appear in any concrete model. The concrete choice of the Lagrangian determines further details of the theory, for example, the nature of the fields that can describe massive particles, tachyons, or even “phantoms”. In “natural" geometric theories, dark energy must also arise. The basic parameters of the theory (cosmological constant, mass, possible dimensionless constants) are theoretically indeterminate, but in the framework of modern "multiverse” ideas, this is more a virtue than a defect. We consider further extensions of the affine models and in more detail discuss approximate effective (“physical”) Lagrangians that can be applied to the cosmology of the early Universe.
Keywords: gravitation, cosmology, affine connection, dark energy, inflation.
English version:
Theoretical and Mathematical Physics, 2010, Volume 163, Issue 3, Pages 753–767
DOI: https://doi.org/10.1007/s11232-010-0059-6
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. T. Filippov, “Weyl–Eddington–Einstein affine gravity in the context of modern cosmology”, TMF, 163:3 (2010), 430–448; Theoret. and Math. Phys., 163:3 (2010), 753–767
Citation in format AMSBIB
\Bibitem{Fil10}
\by A.~T.~Filippov
\paper Weyl--Eddington--Einstein affine gravity in the~context of modern cosmology
\jour TMF
\yr 2010
\vol 163
\issue 3
\pages 430--448
\mathnet{http://mi.mathnet.ru/tmf6512}
\crossref{https://doi.org/10.4213/tmf6512}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2730143}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...163..753F}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 163
\issue 3
\pages 753--767
\crossref{https://doi.org/10.1007/s11232-010-0059-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000280090300008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77954664619}
Linking options:
  • https://www.mathnet.ru/eng/tmf6512
  • https://doi.org/10.4213/tmf6512
  • https://www.mathnet.ru/eng/tmf/v163/i3/p430
  • This publication is cited in the following 14 articles:
    1. Oscar Castillo-Felisola, Bastian Grez, Gonzalo J. Olmo, Oscar Orellana, José Perdiguero Gárate, “Cosmological solutions in polynomial affine gravity with torsion”, Eur. Phys. J. C, 84:9 (2024)  crossref
    2. Jaime Mendoza Hernández, Mauricio Bellini, “Dynamics of cosmic string formation with emission of gravitational waves: a toy model”, Phys. Scr., 99:10 (2024), 105303  crossref
    3. V. A. Berezin, I. D. Ivanova, “Conformal invariance and phenomenology of particle creation: Weyl geometry vs. Riemannian geometry”, Theoret. and Math. Phys., 216:3 (2023), 1287–1298  mathnet  crossref  crossref  mathscinet  adsnasa
    4. Knorr B., Ripken Ch., “Scattering Amplitudes in Affine Gravity”, Phys. Rev. D, 103:10 (2021), 105019  crossref  mathscinet  isi
    5. Filippov T., “A Fresh View of Cosmological Models Describing Very Early Universe: General Solution of the Dynamical Equations”, Phys. Part. Nuclei Lett., 14:2 (2017), 298–303  crossref  isi  scopus
    6. A. T. Filippov, “Solving dynamical equations in general homogeneous isotropic cosmologies with a scalaron”, Theoret. and Math. Phys., 188:1 (2016), 1069–1098  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    7. E. A. Davydov, “Polynomial integrals of motion in dilaton gravity theories”, Theoret. and Math. Phys., 183:1 (2015), 567–577  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    8. Durmuş Ali Demir, “Riemann-Eddington theory: Incorporating matter, degravitating the cosmological constant”, Phys. Rev. D, 90:6 (2014)  crossref
    9. Bijan Saha, “Isotropic and anisotropic dark energy models”, Phys. Part. Nuclei, 45:2 (2014), 349  crossref
    10. A. T. Filippov, “Integrals of equations for cosmological and static reductions in generalized theories of gravity”, Phys. Part. Nuclei Lett., 11:7 (2014), 844  crossref
    11. A. T. Filippov, “Unified description of cosmological and static solutions in affine generalized theories of gravity: Vecton–scalaron duality and its applications”, Theoret. and Math. Phys., 177:2 (2013), 1555–1577  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    12. Davydov E., Filippov A.T., “Dilaton-Scalar Models in the Context of Generalized Affine Gravity Theories: their Properties and Integrability”, Gravit. Cosmol., 19:4 (2013), 209–218  crossref  mathscinet  zmath  adsnasa  isi  scopus
    13. Davydov E.A., “Vector fields in cosmology”, 8th International Conference on Progress in Theoretical Physics (ICPTP 2011), AIP Conf. Proc., 1444, eds. Mebarki N., Mimouni J., Belaloui N., Moussa K., Amer. Inst. Physics, 2012, 125–132  crossref  isi  scopus
    14. Proc. Steklov Inst. Math., 272 (2011), 107–118  mathnet  crossref  mathscinet  zmath  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:1792
    Full-text PDF :327
    References:115
    First page:55
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025