Loading [MathJax]/jax/output/CommonHTML/jax.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2010, Volume 163, Number 2, Pages 314–327
DOI: https://doi.org/10.4213/tmf6502
(Mi tmf6502)
 

This article is cited in 12 scientific papers (total in 12 papers)

The three-body Coulomb scattering problem in a discrete Hilbert-space basis representation

S. L. Yakovleva, Z. Pappb

a Saint-Petersburg State University, St. Petersburg, Russia
b Department of Physics and Astronomy, California State University, Long Beach, California, USA
References:
Abstract: We propose modified Faddeev–Merkuriev integral equations for solving the 22,3 quantum three-body Coulomb scattering problem. We show that the solution of these equations can be obtained using a discrete Hilbert-space basis and that the error in the scattering amplitudes due to truncating the basis can be made arbitrarily small. The Coulomb Green's function is also confined to the two-body sector of the three-body configuration space by this truncation and can be constructed in the leading order using convolution integrals of two-body Green's functions. To evaluate the convolution integral, we propose an integration contour that is applicable for all energies including bound-state energies and scattering energies below and above the three-body breakup threshold.
Keywords: Coulomb scattering problem, quantum scattering problem, Faddeev–Merkuriev integral equations.
Received: 01.10.2009
Revised: 17.11.2009
English version:
Theoretical and Mathematical Physics, 2010, Volume 163, Issue 2, Pages 666–676
DOI: https://doi.org/10.1007/s11232-010-0049-8
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: S. L. Yakovlev, Z. Papp, “The three-body Coulomb scattering problem in a discrete Hilbert-space basis representation”, TMF, 163:2 (2010), 314–327; Theoret. and Math. Phys., 163:2 (2010), 666–676
Citation in format AMSBIB
\Bibitem{YakPap10}
\by S.~L.~Yakovlev, Z.~Papp
\paper The~three-body Coulomb scattering problem in a~discrete Hilbert-space basis representation
\jour TMF
\yr 2010
\vol 163
\issue 2
\pages 314--327
\mathnet{http://mi.mathnet.ru/tmf6502}
\crossref{https://doi.org/10.4213/tmf6502}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...163..666Y}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 163
\issue 2
\pages 666--676
\crossref{https://doi.org/10.1007/s11232-010-0049-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000278584200007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77953533188}
Linking options:
  • https://www.mathnet.ru/eng/tmf6502
  • https://doi.org/10.4213/tmf6502
  • https://www.mathnet.ru/eng/tmf/v163/i2/p314
  • This publication is cited in the following 12 articles:
    1. V. A. Gradusov, V. A. Roudnev, E. A. Yarevsky, S. L. Yakovlev, “Theoretical study of antihydrogen formation reactions in the three body $\({{e}^{ + }}{{e}^{ - }}\bar {p}\)$ system via Faddeev–Merkuriev equations in total orbital momentum representation”, Izvestiya Rossiiskoi akademii nauk. Seriya fizicheskaya, 87:8 (2023), 1191  crossref
    2. V. A. Gradusov, V. A. Roudnev, E. A. Yarevsky, S. L. Yakovlev, “Theoretical Study of Antihydrogen Formation Reactions in the Three Body ${{e}^{ + }}{{e}^{ - }}\bar {p}$ System via Faddeev–Merkuriev Equations in Total Orbital Momentum Representation”, Bull. Russ. Acad. Sci. Phys., 87:8 (2023), 1200  crossref
    3. V. A. Gradusov, V. A. Roudnev, E. A. Yarevsky, S. L. Yakovlev, Communications in Computer and Information Science, 1868, Parallel Computational Technologies, 2023, 63  crossref
    4. V. A. Gradusov, V. A. Roudnev, E. A. Yarevsky, S. L. Yakovlev, “Theoretical study of reactions in the $e^-e^+\bar{p}$ three body system and antihydrogen formation cross sections”, JETP Letters, 114:1 (2021), 11–17  mathnet  crossref  crossref  isi  elib
    5. Gradusov V.A., Roudnev V.A., Yarevsky E.A., Yakovlev S.L., “Solving the Faddeev-Merkuriev Equations in Total Orbital Momentum Representation Via Spline Collocation and Tensor Product Preconditioning”, Commun. Comput. Phys., 30:1 (2021), 255–287  crossref  mathscinet  isi
    6. Gradusov V.A., Roudnev V.A., Yarevsky A., Yakovlev S.L., “High Resolution Calculations of Low Energy Scattering in E(-)E(+)P(-) and E(+)E(-)He(++) Systems Via Faddeev Merkuriev Equations”, J. Phys. B-At. Mol. Opt. Phys., 52:5 (2019), 055202  crossref  isi  scopus
    7. Gradusov V.A., Roudnev V.A., Yakovlev S.L., “Merkuriev Cut-off in e+ H Multichannel Scattering Calculations”, Atoms, 4:1 (2016)  crossref  isi
    8. M. V. Volkov, E. A. Yarevsky, S. L. Yakovlev, “Potential splitting approach to the three-body Coulomb scattering problem”, EPL, 110:3 (2015), 30006  crossref
    9. S. L. Yakovlev, “Quantum $N$-body problem: Matrix structures and equations”, Theoret. and Math. Phys., 181:1 (2014), 1317–1338  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    10. Mengoue M.S., “Three-Body-Continuum Coulomb Problem Using a Compact-Kernel-Integral-Equation Approach”, Phys. Rev. A, 87:2 (2013), 022701  crossref  adsnasa  isi  scopus
    11. Popov Yu.V., Zaytsev S.A., Vinitsky S.I., “J-matrix Method for Calculations of Three-Body Coulomb Wave Functions and Cross Sections of Physical Processes”, Physics of Particles and Nuclei, 42:5 (2011), 683–712  crossref  mathscinet  adsnasa  isi  scopus
    12. Mengoue M.S., Njock M.G.K., Piraux B., Popov Yu.V., Zaytsev S.A., “Electron-impact double ionization of He by applying the Jacobi matrix approach to the Faddeev-Merkuriev equations”, Phys Rev A, 83:5 (2011), 052708  crossref  adsnasa  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:555
    Full-text PDF :233
    References:85
    First page:16
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025