Abstract:
We find the general solution of the reflection equation associated with the Jordanian deformation of the SL(2)-invariant Yang R-matrix. A special scaling limit of the XXZ model with general boundary conditions leads to the same K-matrix. Following the Sklyanin formalism, we derive the Hamiltonian with the boundary terms in explicit form. We also discuss the structure of the spectrum of the deformed XXX model and its dependence on the boundary conditions.
Citation:
P. P. Kulish, N. Manoilovich, Z. Nagy, “Jordanian deformation of the open XXX spin chain”, TMF, 163:2 (2010), 288–298; Theoret. and Math. Phys., 163:2 (2010), 644–652
This publication is cited in the following 9 articles:
K. R. Atalikov, A. V. Zotov, “Higher-rank generalization of the 11-vertex rational R-matrix: IRF–vertex relations and the associative Yang–Baxter equation”, Theoret. and Math. Phys., 216:2 (2023), 1083–1103
N. Manojlović, I. Salom, “Rational so(3) Gaudin model with general boundary terms”, Nuclear Physics B, 978 (2022), 115747
Kitanine N. Nepomechie R.I. Reshetikhin N., “Quantum Integrability and Quantum Groups: a Special Issue in Memory of Petr P Kulish”, J. Phys. A-Math. Theor., 51:11 (2018), 110201
“Osnovnye nauchnye trudy Petra Petrovicha Kulisha”, Voprosy kvantovoi teorii polya i statisticheskoi fiziki. 23, Zap. nauchn. sem. POMI, 433, POMI, SPb., 2015, 8–19
N. Cirilo Antonio, N. Manoilovich, Z. Nagy, “Jordanian deformation of the open sℓ(2) Gaudin model”, Theoret. and Math. Phys., 179:1 (2014), 462–471
Antonio N.C., Manojlovic N., Salom I., “Algebraic Bethe Ansatz For the XXX Chain With Triangular Boundaries and Gaudin Model”, Nucl. Phys. B, 889 (2014), 87–108
G. Aminov, S. Arthamonov, A. Smirnov, A. Zotov, “Rational top and its classical r-matrix”, J. Phys. A, 47:30 (2014), 305207–19
Antonio N.C. Manojlovic N. Nagy Z., “Trigonometric Sl (2) Gaudin Model with Boundary Terms”, Rev. Math. Phys., 25:10, SI (2013), 1343004
J. Avan, P. P. Kulish, G. Rollet, “Reflection K-matrices related to Temperley–Lieb R-matrices”, Theoret. and Math. Phys., 169:2 (2011), 1530–1538