Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2010, Volume 163, Number 1, Pages 79–85
DOI: https://doi.org/10.4213/tmf6487
(Mi tmf6487)
 

This article is cited in 6 scientific papers (total in 6 papers)

Integrals of open two-dimensional lattices

D. K. Demskoi

Academia Sinica, Taipei, Taiwan
Full-text PDF (349 kB) Citations (6)
References:
Abstract: We present an explicit formula for integrals of the open two-dimensional Toda lattice of type An. This formula is applicable for various reductions of this lattice. As an illustration, we find integrals of the G2 Toda lattice. We also reveal a connection between the open An Toda and Shabat–Yamilov lattices.
Keywords: integral, open two-dimensional Toda lattice.
Received: 10.08.2009
English version:
Theoretical and Mathematical Physics, 2010, Volume 163, Issue 1, Pages 466–471
DOI: https://doi.org/10.1007/s11232-010-0035-1
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: D. K. Demskoi, “Integrals of open two-dimensional lattices”, TMF, 163:1 (2010), 79–85; Theoret. and Math. Phys., 163:1 (2010), 466–471
Citation in format AMSBIB
\Bibitem{Dem10}
\by D.~K.~Demskoi
\paper Integrals of open two-dimensional lattices
\jour TMF
\yr 2010
\vol 163
\issue 1
\pages 79--85
\mathnet{http://mi.mathnet.ru/tmf6487}
\crossref{https://doi.org/10.4213/tmf6487}
\zmath{https://zbmath.org/?q=an:1197.37092}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...163..466D}
\elib{https://elibrary.ru/item.asp?id=15358190}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 163
\issue 1
\pages 466--471
\crossref{https://doi.org/10.1007/s11232-010-0035-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000277418800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952269394}
Linking options:
  • https://www.mathnet.ru/eng/tmf6487
  • https://doi.org/10.4213/tmf6487
  • https://www.mathnet.ru/eng/tmf/v163/i1/p79
  • This publication is cited in the following 6 articles:
    1. I.T. Habibullin, A.U. Sakieva, “On integrable reductions of two-dimensional Toda-type lattices”, Partial Differential Equations in Applied Mathematics, 11 (2024), 100854  crossref
    2. Sergey V Smirnov, “Integral preserving discretization of 2D Toda lattices”, J. Phys. A: Math. Theor., 56:26 (2023), 265204  crossref
    3. Habibullin I.T. Kuznetsova M.N., “An Algebraic Criterion of the Darboux Integrability of Differential-Difference Equations and Systems”, J. Phys. A-Math. Theor., 54:50 (2021), 505201  crossref  mathscinet  isi
    4. Demskoi D.K. Tran D.T., “Darboux integrability of determinant and equations for principal minors”, Nonlinearity, 29:7 (2016), 1973–1991  crossref  mathscinet  zmath  isi  elib  scopus
    5. S. V. Smirnov, “Darboux integrability of discrete two-dimensional Toda lattices”, Theoret. and Math. Phys., 182:2 (2015), 189–210  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    6. Nie Zh., “On Characteristic Integrals of Toda Field Theories”, J. Nonlinear Math. Phys., 21:1 (2014), 120–131  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:421
    Full-text PDF :216
    References:49
    First page:10
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025