Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2010, Volume 163, Number 1, Pages 34–44
DOI: https://doi.org/10.4213/tmf6485
(Mi tmf6485)
 

This article is cited in 23 scientific papers (total in 23 papers)

Asymptotics of the discrete spectrum of a model operator associated with a system of three particles on a lattice

T. H. Rasulov

Bukhara State University, Bukhara, Uzbekistan
References:
Abstract: We consider a model Schrödinger operator $H_\mu$ associated with a system of three particles on the three-dimensional lattice $\mathbb Z^3$ with a functional parameter of special form. We prove that if the corresponding Friedrichs model has a zero-energy resonance, then the operator $H_\mu$ has infinitely many negative eigenvalues accumulating at zero (the Efimov effect). We obtain the asymptotic expression for the number of eigenvalues of $H_\mu$ below $z$ as $z\to-0$.
Keywords: model operator, Friedrichs model, Birman–Schwinger principle, Efimov effect, Hilbert–Schmidt operator, zero-energy resonance, discrete spectrum.
Received: 02.06.2009
Revised: 09.10.2009
English version:
Theoretical and Mathematical Physics, 2010, Volume 163, Issue 1, Pages 429–437
DOI: https://doi.org/10.1007/s11232-010-0033-3
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: T. H. Rasulov, “Asymptotics of the discrete spectrum of a model operator associated with a system of three particles on a lattice”, TMF, 163:1 (2010), 34–44; Theoret. and Math. Phys., 163:1 (2010), 429–437
Citation in format AMSBIB
\Bibitem{Ras10}
\by T.~H.~Rasulov
\paper Asymptotics of the~discrete spectrum of a~model operator associated with a~system of three particles on a~lattice
\jour TMF
\yr 2010
\vol 163
\issue 1
\pages 34--44
\mathnet{http://mi.mathnet.ru/tmf6485}
\crossref{https://doi.org/10.4213/tmf6485}
\zmath{https://zbmath.org/?q=an:1196.81123}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...163..429R}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 163
\issue 1
\pages 429--437
\crossref{https://doi.org/10.1007/s11232-010-0033-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000277418800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952255156}
Linking options:
  • https://www.mathnet.ru/eng/tmf6485
  • https://doi.org/10.4213/tmf6485
  • https://www.mathnet.ru/eng/tmf/v163/i1/p34
  • This publication is cited in the following 23 articles:
    1. D. Zh. Kulturaev, Yu. Kh. Eshkabilov, “On the Spectral Properties of Selfadjoint Partial Integral Operators with a Nondegenerate Kernel”, Sib Math J, 65:2 (2024), 475  crossref
    2. M. I. Muminov, J. A. Pardaev, “The Spectrum of Discrete Schrödinger Operator on a Three Dimensional Triangular Lattice with a Finite-range Potential”, Lobachevskii J Math, 45:4 (2024), 1722  crossref
    3. J. I. Abdullaev, Sh. H. Ergashova, “Eigenvalues of the Schrödinger Operator Corresponding to a System of Three Fermions on a One Dimensional Lattice”, Lobachevskii J Math, 45:8 (2024), 3821  crossref
    4. J. I. Abdullaev, A. M. Khalkhuzhaev, Kh. Sh. Makhmudov, “The Infiniteness of the Number of Eigenvalues of the Schrödinger Operator of a System of Two Particles on a Lattice”, Lobachevskii J Math, 45:10 (2024), 4828  crossref
    5. Bekzod I. Bahronov, Tulkin H. Rasulov, PHYSICAL MESOMECHANICS OF CONDENSED MATTER: Physical Principles of Multiscale Structure Formation and the Mechanisms of Nonlinear Behavior: MESO2022, 2899, PHYSICAL MESOMECHANICS OF CONDENSED MATTER: Physical Principles of Multiscale Structure Formation and the Mechanisms of Nonlinear Behavior: MESO2022, 2023, 030007  crossref
    6. Tulkin H. Rasulov, Elyor B. Dilmurodov, Khilola G. Khayitova, PHYSICAL MESOMECHANICS OF CONDENSED MATTER: Physical Principles of Multiscale Structure Formation and the Mechanisms of Nonlinear Behavior: MESO2022, 2899, PHYSICAL MESOMECHANICS OF CONDENSED MATTER: Physical Principles of Multiscale Structure Formation and the Mechanisms of Nonlinear Behavior: MESO2022, 2023, 030005  crossref
    7. D. Zh. Kulturaev, Yu. Kh. Eshkabilov, “O spektralnykh svoistvakh samosopryazhennykh chastichno integralnykh operatorov s nevyrozhdennymi yadrami”, Vladikavk. matem. zhurn., 24:4 (2022), 91–104  mathnet  crossref  mathscinet
    8. Kucharov R.R. Khamraeva R.R., “Non-Compact Perturbations of the Spectrum of Multipliers Given With Functions”, Nanosyst.-Phys. Chem. Math., 12:2 (2021), 135–141  crossref  isi
    9. G. P. Arzikulov, Yu. Kh. Eshkabilov, “About the spectral properties of one three-partial model operator”, Russian Math. (Iz. VUZ), 64:5 (2020), 1–7  mathnet  crossref  crossref  isi
    10. Yu. Kh. Èshkabilov, “Spectrum of a model three-particle Schrödinger operator”, Theoret. and Math. Phys., 186:2 (2016), 268–279  mathnet  crossref  crossref  mathscinet  isi  elib
    11. T. Kh. Rasulov, Z. D. Rasulova, “Cpektr odnogo trekhchastichnogo modelnogo operatora na reshetke s nelokalnymi potentsialami”, Sib. elektron. matem. izv., 12 (2015), 168–184  mathnet  crossref
    12. T. Kh. Rasulov, R. T. Mukhitdinov, “The finiteness of the discrete spectrum of a model operator associated with a system of three particles on a lattice”, Russian Math. (Iz. VUZ), 58:1 (2014), 52–59  mathnet  crossref
    13. R. R. Kucharov, Yu. Kh. Eshkabilov, “On the number of negative eigenvalues of a partial integral operator”, Siberian Adv. Math., 25:3 (2015), 179–190  mathnet  crossref  mathscinet
    14. M. I. Muminov, T. H. Rasulov, “Infiniteness of the number of eigenvalues embedded in the essential spectrum of a $2\times2$ operator matrix”, Eurasian Math. J., 5:2 (2014), 60–77  mathnet
    15. G. P. Arzikulov, Yu. Kh. Eshkabilov, “On the essential and the discrete spectra of a Fredholm type partial integral operator”, Siberian Adv. Math., 25:4 (2015), 231–242  mathnet  crossref  mathscinet
    16. Yu. Kh. Eshkabilov, R. R. Kucharov, “Essential and discrete spectra of the three-particle Schrödinger operator on a lattice”, Theoret. and Math. Phys., 170:3 (2012), 341–353  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    17. T. Kh. Rasulov, “Struktura suschestvennogo spektra modelnogo operatora, assotsiirovannogo s sistemoi trekh chastits na reshetke”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2(27) (2012), 34–43  mathnet  crossref  zmath
    18. Yu. Kh. Eshkabilov, “On the discrete spectrum of partial integral operators”, Siberian Adv. Math., 23:4 (2013), 227–233  mathnet  crossref  mathscinet  elib
    19. T. H. Rasulov, “Essential spectrum of a model operator associated with a three-particle system on a lattice”, Theoret. and Math. Phys., 166:1 (2011), 81–93  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    20. T. Kh. Rasulov, A. A. Rakhmonov, “Uravnenie Faddeeva i mestopolozhenie suschestvennogo spektra odnogo trekhchastichnogo modelnogo operatora”, Vestn. Sam. gos. tekhn. un-ta. Ser. Fiz.-mat. nauki, 2(23) (2011), 170–180  mathnet  crossref
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:663
    Full-text PDF :228
    References:86
    First page:12
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025