Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2010, Volume 163, Number 1, Pages 34–44
DOI: https://doi.org/10.4213/tmf6485
(Mi tmf6485)
 

This article is cited in 21 scientific papers (total in 21 papers)

Asymptotics of the discrete spectrum of a model operator associated with a system of three particles on a lattice

T. H. Rasulov

Bukhara State University, Bukhara, Uzbekistan
References:
Abstract: We consider a model Schrödinger operator $H_\mu$ associated with a system of three particles on the three-dimensional lattice $\mathbb Z^3$ with a functional parameter of special form. We prove that if the corresponding Friedrichs model has a zero-energy resonance, then the operator $H_\mu$ has infinitely many negative eigenvalues accumulating at zero (the Efimov effect). We obtain the asymptotic expression for the number of eigenvalues of $H_\mu$ below $z$ as $z\to-0$.
Keywords: model operator, Friedrichs model, Birman–Schwinger principle, Efimov effect, Hilbert–Schmidt operator, zero-energy resonance, discrete spectrum.
Received: 02.06.2009
Revised: 09.10.2009
English version:
Theoretical and Mathematical Physics, 2010, Volume 163, Issue 1, Pages 429–437
DOI: https://doi.org/10.1007/s11232-010-0033-3
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: T. H. Rasulov, “Asymptotics of the discrete spectrum of a model operator associated with a system of three particles on a lattice”, TMF, 163:1 (2010), 34–44; Theoret. and Math. Phys., 163:1 (2010), 429–437
Citation in format AMSBIB
\Bibitem{Ras10}
\by T.~H.~Rasulov
\paper Asymptotics of the~discrete spectrum of a~model operator associated with a~system of three particles on a~lattice
\jour TMF
\yr 2010
\vol 163
\issue 1
\pages 34--44
\mathnet{http://mi.mathnet.ru/tmf6485}
\crossref{https://doi.org/10.4213/tmf6485}
\zmath{https://zbmath.org/?q=an:1196.81123}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...163..429R}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 163
\issue 1
\pages 429--437
\crossref{https://doi.org/10.1007/s11232-010-0033-3}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000277418800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952255156}
Linking options:
  • https://www.mathnet.ru/eng/tmf6485
  • https://doi.org/10.4213/tmf6485
  • https://www.mathnet.ru/eng/tmf/v163/i1/p34
  • This publication is cited in the following 21 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:608
    Full-text PDF :208
    References:71
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024