Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2010, Volume 162, Number 2, Pages 285–303
DOI: https://doi.org/10.4213/tmf6471
(Mi tmf6471)
 

This article is cited in 3 scientific papers (total in 3 papers)

Computation of localization degree in the sense of the Anderson criterion for a one-dimensional diagonally disordered system

G. G. Kozlov

Vavilov State Optical Institute, St. Petersburg, Russia
Full-text PDF (608 kB) Citations (3)
References:
Abstract: For a one-dimensional diagonally disordered half-infinite chain, we consider the problem of finding the limit value as $t\to\infty$ of the average excitation density $D$ at the edge site of the chain under the condition that the excitation is localized at this site at $t=0$. For a binary disordered chain, we obtain an expression for $D$ that is exact in the small defect concentration limit for an arbitrary defect energy. In this case, the density $D$ depends nonanalytically on the energy. We obtain an expression for $D$ in the case of an arbitrary small diagonal disorder. We also calculate the relative contribution to $D$ from states with a given energy. All the obtained results agree well with the computer simulation data.
Keywords: disordered system, random matrix, state localization, Anderson criterion.
Received: 11.02.2010
English version:
Theoretical and Mathematical Physics, 2010, Volume 162, Issue 2, Pages 238–253
DOI: https://doi.org/10.1007/s11232-010-0019-1
Bibliographic databases:
Language: Russian
Citation: G. G. Kozlov, “Computation of localization degree in the sense of the Anderson criterion for a one-dimensional diagonally disordered system”, TMF, 162:2 (2010), 285–303; Theoret. and Math. Phys., 162:2 (2010), 238–253
Citation in format AMSBIB
\Bibitem{Koz10}
\by G.~G.~Kozlov
\paper Computation of localization degree in the~sense of the~Anderson criterion for a~one-dimensional diagonally disordered system
\jour TMF
\yr 2010
\vol 162
\issue 2
\pages 285--303
\mathnet{http://mi.mathnet.ru/tmf6471}
\crossref{https://doi.org/10.4213/tmf6471}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2681972}
\zmath{https://zbmath.org/?q=an:1197.82066}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2010TMP...162..238K}
\transl
\jour Theoret. and Math. Phys.
\yr 2010
\vol 162
\issue 2
\pages 238--253
\crossref{https://doi.org/10.1007/s11232-010-0019-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000275463100010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-77952041406}
Linking options:
  • https://www.mathnet.ru/eng/tmf6471
  • https://doi.org/10.4213/tmf6471
  • https://www.mathnet.ru/eng/tmf/v162/i2/p285
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024