Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2000, Volume 124, Number 3, Pages 373–390
DOI: https://doi.org/10.4213/tmf645
(Mi tmf645)
 

This article is cited in 2 scientific papers (total in 2 papers)

Integrable NN-dimensional systems on the Hopf algebra and qq-deformations

Ya. V. Lisitsyn, A. V. Shapovalov

Tomsk State University
Full-text PDF (291 kB) Citations (2)
References:
Abstract: We construct the class of integrable classical and quantum systems on the Hopf algebras describing nn interacting particles. We obtain the general structure of an integrable Hamiltonian system for the Hopf algebra A(g)A(g) of a simple Lie algebra gg and prove that the integrals of motion depend only on linear combinations of kk coordinates of the phase space, 2indgkgindg2indgkgindg, where indgindg and gg are the respective index and Coxeter number of the Lie algebra gg. The standard procedure of qq-deformation results in the quantum integrable system. We apply this general scheme to the algebras sl(2)sl(2), sl(3)sl(3), and o(3,1)o(3,1). An exact solution for the quantum analogue of the NN-dimensional Hamiltonian system on the Hopf algebra A(sl(2))A(sl(2)) is constructed using the method of noncommutative integration of linear differential equations.
Received: 05.11.1999
English version:
Theoretical and Mathematical Physics, 2000, Volume 124, Issue 3, Pages 1172–1186
DOI: https://doi.org/10.1007/BF02550996
Bibliographic databases:
Language: Russian
Citation: Ya. V. Lisitsyn, A. V. Shapovalov, “Integrable NN-dimensional systems on the Hopf algebra and qq-deformations”, TMF, 124:3 (2000), 373–390; Theoret. and Math. Phys., 124:3 (2000), 1172–1186
Citation in format AMSBIB
\Bibitem{LisSha00}
\by Ya.~V.~Lisitsyn, A.~V.~Shapovalov
\paper Integrable $N$-dimensional systems on the Hopf algebra and $q$-deformations
\jour TMF
\yr 2000
\vol 124
\issue 3
\pages 373--390
\mathnet{http://mi.mathnet.ru/tmf645}
\crossref{https://doi.org/10.4213/tmf645}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1821101}
\zmath{https://zbmath.org/?q=an:1115.37338}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 124
\issue 3
\pages 1172--1186
\crossref{https://doi.org/10.1007/BF02550996}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000090122800002}
Linking options:
  • https://www.mathnet.ru/eng/tmf645
  • https://doi.org/10.4213/tmf645
  • https://www.mathnet.ru/eng/tmf/v124/i3/p373
  • This publication is cited in the following 2 articles:
    1. Obukhov V., “Separation of Variables in Hamilton-Jacobi and Klein-Gordon-Fock Equations For a Charged Test Particle in the Stackel Spaces of Type (1.1)”, Int. J. Geom. Methods Mod. Phys., 18:3 (2021), 2150036  crossref  isi
    2. Obukhov V., “Separation of Variables in Hamilton-Jacobi Equation For a Charged Test Particle in the Stackel Spaces of Type (2.1)”, Int. J. Geom. Methods Mod. Phys., 17:14 (2020), 2050186  crossref  mathscinet  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:477
    Full-text PDF :215
    References:70
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025