Abstract:
We construct the class of integrable classical and quantum systems on the Hopf algebras describing nn interacting particles. We obtain the general structure of an integrable Hamiltonian system for the Hopf algebra A(g)A(g) of a simple Lie algebra gg and prove that the integrals of motion depend only on linear combinations of kk coordinates of the phase space, 2⋅indg≤k≤g⋅indg2⋅indg≤k≤g⋅indg, where indgindg and gg are the respective index and Coxeter number of the Lie algebra gg. The standard procedure of qq-deformation results in the quantum integrable system. We apply this general scheme to the algebras sl(2)sl(2), sl(3)sl(3), and o(3,1)o(3,1). An exact solution for the quantum analogue of the NN-dimensional Hamiltonian system on the Hopf algebra A(sl(2))A(sl(2)) is constructed using the method of noncommutative integration of linear differential equations.
Citation:
Ya. V. Lisitsyn, A. V. Shapovalov, “Integrable NN-dimensional systems on the Hopf algebra and qq-deformations”, TMF, 124:3 (2000), 373–390; Theoret. and Math. Phys., 124:3 (2000), 1172–1186
\Bibitem{LisSha00}
\by Ya.~V.~Lisitsyn, A.~V.~Shapovalov
\paper Integrable $N$-dimensional systems on the Hopf algebra and $q$-deformations
\jour TMF
\yr 2000
\vol 124
\issue 3
\pages 373--390
\mathnet{http://mi.mathnet.ru/tmf645}
\crossref{https://doi.org/10.4213/tmf645}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1821101}
\zmath{https://zbmath.org/?q=an:1115.37338}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 124
\issue 3
\pages 1172--1186
\crossref{https://doi.org/10.1007/BF02550996}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000090122800002}
Linking options:
https://www.mathnet.ru/eng/tmf645
https://doi.org/10.4213/tmf645
https://www.mathnet.ru/eng/tmf/v124/i3/p373
This publication is cited in the following 2 articles:
Obukhov V., “Separation of Variables in Hamilton-Jacobi and Klein-Gordon-Fock Equations For a Charged Test Particle in the Stackel Spaces of Type (1.1)”, Int. J. Geom. Methods Mod. Phys., 18:3 (2021), 2150036
Obukhov V., “Separation of Variables in Hamilton-Jacobi Equation For a Charged Test Particle in the Stackel Spaces of Type (2.1)”, Int. J. Geom. Methods Mod. Phys., 17:14 (2020), 2050186