Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2000, Volume 124, Number 3, Pages 373–390
DOI: https://doi.org/10.4213/tmf645
(Mi tmf645)
 

This article is cited in 2 scientific papers (total in 2 papers)

Integrable $N$-dimensional systems on the Hopf algebra and $q$-deformations

Ya. V. Lisitsyn, A. V. Shapovalov

Tomsk State University
Full-text PDF (291 kB) Citations (2)
References:
Abstract: We construct the class of integrable classical and quantum systems on the Hopf algebras describing $n$ interacting particles. We obtain the general structure of an integrable Hamiltonian system for the Hopf algebra $A(g)$ of a simple Lie algebra $g$ and prove that the integrals of motion depend only on linear combinations of $k$ coordinates of the phase space, $2\cdot\mathrm{ind}g\leq k\leq\mathbf g\cdot\mathrm{ind}g$, where $\mathrm{ind} g$ and $\mathbf g$ are the respective index and Coxeter number of the Lie algebra $g$. The standard procedure of $q$-deformation results in the quantum integrable system. We apply this general scheme to the algebras $sl(2)$, $sl(3)$, and $o(3,1)$. An exact solution for the quantum analogue of the $N$-dimensional Hamiltonian system on the Hopf algebra $A\bigl(sl(2)\bigr)$ is constructed using the method of noncommutative integration of linear differential equations.
Received: 05.11.1999
English version:
Theoretical and Mathematical Physics, 2000, Volume 124, Issue 3, Pages 1172–1186
DOI: https://doi.org/10.1007/BF02550996
Bibliographic databases:
Language: Russian
Citation: Ya. V. Lisitsyn, A. V. Shapovalov, “Integrable $N$-dimensional systems on the Hopf algebra and $q$-deformations”, TMF, 124:3 (2000), 373–390; Theoret. and Math. Phys., 124:3 (2000), 1172–1186
Citation in format AMSBIB
\Bibitem{LisSha00}
\by Ya.~V.~Lisitsyn, A.~V.~Shapovalov
\paper Integrable $N$-dimensional systems on the Hopf algebra and $q$-deformations
\jour TMF
\yr 2000
\vol 124
\issue 3
\pages 373--390
\mathnet{http://mi.mathnet.ru/tmf645}
\crossref{https://doi.org/10.4213/tmf645}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1821101}
\zmath{https://zbmath.org/?q=an:1115.37338}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 124
\issue 3
\pages 1172--1186
\crossref{https://doi.org/10.1007/BF02550996}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000090122800002}
Linking options:
  • https://www.mathnet.ru/eng/tmf645
  • https://doi.org/10.4213/tmf645
  • https://www.mathnet.ru/eng/tmf/v124/i3/p373
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:438
    Full-text PDF :201
    References:60
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024