|
This article is cited in 5 scientific papers (total in 5 papers)
,Fermi–Dirac and Bose–Einstein functions of negative integer order
D. Cvijović Atomic Physics Laboratory, Vinča Institute of Nuclear
Sciences, Belgrade, Republic of Serbia
Abstract:
We find simple explicit closed-form formulas for the Fermi–Dirac function $\mathscr{F}_{-n}(z)$ and Bose–Einstein function $\mathscr{B}_{-n}(z)$ for arbitrary $n\in\mathbb{N}$. The obtained formulas involve the higher tangent numbers defined by Carlitz and Scoville. We present some examples and direct consequences of applying the main results.
Keywords:
Fermi–Dirac function, Bose–Einstein function, Fermi–Dirac integral, Bose–Einstein integral, higher-order tangent number, order-$k$ tangent number.
Received: 30.04.2009
Citation:
D. Cvijović“,Fermi–Dirac and Bose–Einstein functions of negative integer order”, TMF, 161:3 (2009), 400–405; Theoret. and Math. Phys., 161:3 (2009), 1663–1668
Linking options:
https://www.mathnet.ru/eng/tmf6449https://doi.org/10.4213/tmf6449 https://www.mathnet.ru/eng/tmf/v161/i3/p400
|
Statistics & downloads: |
Abstract page: | 962 | Full-text PDF : | 312 | References: | 72 | First page: | 23 |
|