Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2009, Volume 161, Number 3, Pages 346–366
DOI: https://doi.org/10.4213/tmf6446
(Mi tmf6446)
 

This article is cited in 12 scientific papers (total in 12 papers)

$\tau$-function solution of the sixth Painlevé transcendent

Yu. V. Brezhnev

Tomsk State University, Tomsk, Russia
References:
Abstract: We represent and analyze the general solution of the sixth Painlevé transcendent $\mathcal P_6$ in the Picard–Hitchin–Okamoto class in the Painlevé form as the logarithmic derivative of the ratio of $\tau$-functions. We express these functions explicitly in terms of the elliptic Legendre integrals and Jacobi theta functions, for which we write the general differentiation rules. We also establish a relation between the $\mathcal P_6$ equation and the uniformization of algebraic curves and present examples.
Keywords: Painlevé VI equation, elliptic function, theta function, uniformization, automorphic function.
Received: 04.03.2009
Revised: 08.04.2009
English version:
Theoretical and Mathematical Physics, 2009, Volume 161, Issue 3, Pages 1616–1633
DOI: https://doi.org/10.1007/s11232-009-0150-z
Bibliographic databases:
Language: Russian
Citation: Yu. V. Brezhnev, “A $\tau$-function solution of the sixth Painlevé transcendent”, TMF, 161:3 (2009), 346–366; Theoret. and Math. Phys., 161:3 (2009), 1616–1633
Citation in format AMSBIB
\Bibitem{Bre09}
\by Yu.~V.~Brezhnev
\paper A~$\tau$-function solution of the~sixth Painlev\'e transcendent
\jour TMF
\yr 2009
\vol 161
\issue 3
\pages 346--366
\mathnet{http://mi.mathnet.ru/tmf6446}
\crossref{https://doi.org/10.4213/tmf6446}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2642195}
\zmath{https://zbmath.org/?q=an:1185.37137}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...161.1616B}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 161
\issue 3
\pages 1616--1633
\crossref{https://doi.org/10.1007/s11232-009-0150-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273561600005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76649090285}
Linking options:
  • https://www.mathnet.ru/eng/tmf6446
  • https://doi.org/10.4213/tmf6446
  • https://www.mathnet.ru/eng/tmf/v161/i3/p346
  • This publication is cited in the following 12 articles:
    1. Gontsov R.R., Goryuchkina V I., “On the Convergence of Formal Exotic Series Solutions of An Ode”, Comput. Methods Funct. Theory, 20:2 (2020), 279–295  crossref  mathscinet  isi  scopus
    2. Chen Zh., Kuo T.-J., Lin Ch.-Sh., “Unitary monodromy implies the smoothness along the real axis for some Painlevé VI equation, I”, J. Geom. Phys., 116 (2017), 52–63  crossref  mathscinet  zmath  isi  scopus
    3. Brezhnev Yu.V., “The sixth Painlevé transcendent and uniformization of algebraic curves”, J. Differ. Equ., 260:3 (2016), 2507–2556  crossref  mathscinet  zmath  isi  elib  scopus
    4. Davide Guzzetti, “A Review of the Sixth Painlevé Equation”, Constr Approx, 41:3 (2015), 495  crossref
    5. Brezhnev Yu.V., “Non-Canonical Extension of Theta-Functions and Modular Integrability of Theta-Constants”, Proc. R. Soc. Edinb. Sect. A-Math., 143:4 (2013), 689–738  crossref  mathscinet  zmath  isi  scopus
    6. Guzzetti D., “Pole Distribution of Pvi Transcendents Close to a Critical Point”, Physica D, 241:23-24 (2012), 2188–2203  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    7. Brezhnev Yu.V., “Spectral/Quadrature Duality: Picard-Vessiot Theory and Finite-Gap Potentials”, Algebraic Aspects of Darboux Transformations, Quantum Integrable Systems and Supersymmetric Quantum Mechanics, Contemporary Mathematics, 563, eds. AcostaHumanez P., Finkel F., Kamran N., Olver P., Amer Mathematical Soc, 2012, 1–31  crossref  mathscinet  zmath  isi
    8. Davide Guzzetti, “Tabulation of Painlevé 6 transcendents”, Nonlinearity, 25:12 (2012), 3235  crossref
    9. Blower G., “On linear systems and $\tau$ functions associated with Lamé's equation and Painlevé's equation VI”, J. Math. Anal. Appl., 376:1 (2011), 294–316  crossref  mathscinet  zmath  isi  elib  scopus
    10. Goryuchkina I.V., “Reshenie pikara shestogo uravneniya penleve i asimptotiki, poluchennye s pomoschyu stepennoi geometrii”, Preprinty IPM im. M.V. Keldysha, 2011, no. 66, 1–8  elib
    11. I. V. Goryuchkina, “Reshenie Pikara shestogo uravneniya Penleve i asimptotiki, poluchennye s pomoschyu stepennoi geometrii”, Preprinty IPM im. M. V. Keldysha, 2011, 066, 8 pp.  mathnet
    12. Mangazeev V.V., Guttmann A.J., “Form factor expansions in the 2D Ising model and Painlevé VI”, Nuclear Phys. B, 838:3 (2010), 391–412  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:660
    Full-text PDF :255
    References:121
    First page:28
     
      Contact us:
    math-net2025_05@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025