Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2009, Volume 161, Number 3, Pages 309–317
DOI: https://doi.org/10.4213/tmf6442
(Mi tmf6442)
 

This article is cited in 3 scientific papers (total in 3 papers)

The symmetry of the partition function of some square ice models

J.-Ch. Aval

Laboratoire Bordelais de Recherche en Informatique, Université Bordeaux 1, CNRS, Talence, France
Full-text PDF (539 kB) Citations (3)
References:
Abstract: We consider the partition function $Z(N;x_1,\dots,x_N,y_1,\dots,y_N)$ of the square ice model with domain wall boundary conditions. We give a simple proof that $Z$ is symmetric with respect to all its variables when the global parameter $a$ of the model is set to the special value $a=e^{i\pi/3}$. Our proof does not use any determinant interpretation of $Z$ and can be adapted to other situations (e.g., to some symmetric ice models).
Keywords: alternating-sign matrix, square ice model, partition function, Yang–Baxter equation.
Received: 27.03.2009
Revised: 12.05.2009
English version:
Theoretical and Mathematical Physics, 2009, Volume 161, Issue 3, Pages 1582–1589
DOI: https://doi.org/10.1007/s11232-009-0146-8
Bibliographic databases:
Language: Russian
Citation: J.-Ch. Aval, “The symmetry of the partition function of some square ice models”, TMF, 161:3 (2009), 309–317; Theoret. and Math. Phys., 161:3 (2009), 1582–1589
Citation in format AMSBIB
\Bibitem{Ava09}
\by J.-Ch.~Aval
\paper The~symmetry of the~partition function of some square ice models
\jour TMF
\yr 2009
\vol 161
\issue 3
\pages 309--317
\mathnet{http://mi.mathnet.ru/tmf6442}
\crossref{https://doi.org/10.4213/tmf6442}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2642191}
\zmath{https://zbmath.org/?q=an:1187.82016}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...161.1582A}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 161
\issue 3
\pages 1582--1589
\crossref{https://doi.org/10.1007/s11232-009-0146-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000273561600001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-76649145416}
Linking options:
  • https://www.mathnet.ru/eng/tmf6442
  • https://doi.org/10.4213/tmf6442
  • https://www.mathnet.ru/eng/tmf/v161/i3/p309
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:393
    Full-text PDF :149
    References:74
    First page:12
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024