Abstract:
We study the integrable motion over the sphere $S^2$ in the potential $V=(x_1x_2x_3)^{-2/3}$ possessing an additional integral of motion that is cubic in the momenta. We construct the Lax representation without a spectral parameter and consider the relation to the three-particle Toda chain.
Citation:
A. V. Tsiganov, “An integrable system related to the spherical top and the Toda chain”, TMF, 124:2 (2000), 310–322; Theoret. and Math. Phys., 124:2 (2000), 1121–1131
\Bibitem{Tsi00}
\by A.~V.~Tsiganov
\paper An integrable system related to the spherical top and the Toda chain
\jour TMF
\yr 2000
\vol 124
\issue 2
\pages 310--322
\mathnet{http://mi.mathnet.ru/tmf641}
\crossref{https://doi.org/10.4213/tmf641}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1821119}
\zmath{https://zbmath.org/?q=an:1031.37049}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 124
\issue 2
\pages 1121--1131
\crossref{https://doi.org/10.1007/BF02551082}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000089809400009}
Linking options:
https://www.mathnet.ru/eng/tmf641
https://doi.org/10.4213/tmf641
https://www.mathnet.ru/eng/tmf/v124/i2/p310
This publication is cited in the following 4 articles:
Borisov A. Mamaev I., “Rigid Body Dynamics”, Rigid Body Dynamics, de Gruyter Studies in Mathematical Physics, 52, Walter de Gruyter Gmbh, 2019, 1–520
Borisov, AV, “The Hamiltonian dynamics of self-gravitating liquid and gas ellipsoids”, Regular & Chaotic Dynamics, 14:2 (2009), 179
Borisov, AV, “Multiparticle systems. The algebra of integrals and integrable cases”, Regular & Chaotic Dynamics, 14:1 (2009), 18
Tsiganov, AV, “The Drach superintegrable systems”, Journal of Physics A-Mathematical and General, 33:41 (2000), 7407