Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2009, Volume 160, Number 3, Pages 434–443
DOI: https://doi.org/10.4213/tmf6408
(Mi tmf6408)
 

Discrete Toda lattices and the Laplace method

V. L. Vereshchagin

Institute of Mathematics with Computing Centre, Ufa Science Centre, RAS, Ufa, Russia
References:
Abstract: We apply the Laplace cascade method to systems of discrete equations of the form $u_{i+1,j+1}=f(u_{i+1,j}, u_{i,j+1},u_{i,j}, u_{i,j-1})$, where $u_{ij}$, $i,j\in\mathbb Z$, is an element of a sequence of unknown vectors. We introduce the concept of a generalized Laplace invariant and the related property that the systems is “of the Liouville type”. We prove a series of statements about the correctness of the definition of the generalized invariant and its applicability for seeking solutions and integrals of the system. We give some examples of systems of the Liouville type.
Keywords: nonlinear discrete equation, Laplace method, Darboux integrability.
Received: 13.08.2008
Revised: 05.11.2008
English version:
Theoretical and Mathematical Physics, 2009, Volume 160, Issue 3, Pages 1229–1237
DOI: https://doi.org/10.1007/s11232-009-0112-5
Bibliographic databases:
Language: Russian
Citation: V. L. Vereshchagin, “Discrete Toda lattices and the Laplace method”, TMF, 160:3 (2009), 434–443; Theoret. and Math. Phys., 160:3 (2009), 1229–1237
Citation in format AMSBIB
\Bibitem{Ver09}
\by V.~L.~Vereshchagin
\paper Discrete Toda lattices and the~Laplace method
\jour TMF
\yr 2009
\vol 160
\issue 3
\pages 434--443
\mathnet{http://mi.mathnet.ru/tmf6408}
\crossref{https://doi.org/10.4213/tmf6408}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2604582}
\zmath{https://zbmath.org/?q=an:1180.37099}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...160.1229V}
\elib{https://elibrary.ru/item.asp?id=15301407}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 160
\issue 3
\pages 1229--1237
\crossref{https://doi.org/10.1007/s11232-009-0112-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000271029500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350534161}
Linking options:
  • https://www.mathnet.ru/eng/tmf6408
  • https://doi.org/10.4213/tmf6408
  • https://www.mathnet.ru/eng/tmf/v160/i3/p434
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:594
    Full-text PDF :199
    References:90
    First page:17
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024