Abstract:
We construct a Lagrangian describing the low-frequency dynamics of a system with spontaneously broken phase and translational symmetry (a supersolid). Using the principle of stationary action, we obtain the hydrodynamic equations for the considered system. We give a relativistic generalization of the obtained equations of motion in terms of the Gibbs thermodynamic potential density.
Citation:
A. S. Peletminskii, S. V. Peletminskii, “Principle of stationary action in the theory of superfluid systems with spontaneously broken translational symmetry”, TMF, 160:2 (2009), 333–351; Theoret. and Math. Phys., 160:2 (2009), 1146–1160
\Bibitem{PelPel09}
\by A.~S.~Peletminskii, S.~V.~Peletminskii
\paper Principle of stationary action in the~theory of superfluid systems with spontaneously broken translational symmetry
\jour TMF
\yr 2009
\vol 160
\issue 2
\pages 333--351
\mathnet{http://mi.mathnet.ru/tmf6402}
\crossref{https://doi.org/10.4213/tmf6402}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2604556}
\zmath{https://zbmath.org/?q=an:1179.82171}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...160.1146P}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 160
\issue 2
\pages 1146--1160
\crossref{https://doi.org/10.1007/s11232-009-0107-2}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269885900008}
Linking options:
https://www.mathnet.ru/eng/tmf6402
https://doi.org/10.4213/tmf6402
https://www.mathnet.ru/eng/tmf/v160/i2/p333
This publication is cited in the following 2 articles:
Peletminskii A.S., Peletminskii V S., Slyusarenko V Yu., “Su(3) Symmetry in Theory of a Weakly Interacting Gas of Spin-1 Atoms With Bose-Einstein Condensate”, Phys. Lett. A, 384:31 (2020), 126798
Bulakhov M.S. Peletminskii A.S. Peletminskii V S. Slyusarenko V Yu. Sotnikov A.G., “Re-Examining the Quadratic Approximation in Theory of a Weakly Interacting Bose Gas With Condensate: the Role of Nonlocal Interaction Potentials”, J. Phys. B-At. Mol. Opt. Phys., 51:20 (2018), 205302