Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2009, Volume 160, Number 1, Pages 229–239
DOI: https://doi.org/10.4213/tmf6394
(Mi tmf6394)
 

This article is cited in 12 scientific papers (total in 12 papers)

Madelung fluid description of the generalized derivative nonlinear Schrödinger equation: Special solutions and their stability

A. Visinescua, D. Grecua, R. Fedeleb, S. De Nicolac

a National Institute for Physics and Nuclear Engineering
b Università degli Studi di Napoli Federico II
c Istituto di Cibernetica "Eduardo Caianiello"
References:
Abstract: A correspondence between the families of generalized nonlinear Schrödinger (NLS) equations and generalized KdV equations was recently found using a Madelung fluid description. We similarly consider a special derivative NLS equation. We find a number of solitary waves and periodic solutions (expressed in terms of elliptic Jacobi functions) for a motion with a stationary profile current velocity. We study the stability of a bright solitary wave (ground state) by conjecturing that the Vakhitov–Kolokolov criterion is applicable.
Keywords: nonlinear partial differential equation, generalized nonlinear Schrödinger equation, generalized Korteweg–de Vries equation, Madelung fluid description.
English version:
Theoretical and Mathematical Physics, 2009, Volume 160, Issue 1, Pages 1066–1074
DOI: https://doi.org/10.1007/s11232-009-0098-z
Bibliographic databases:
Language: Russian
Citation: A. Visinescu, D. Grecu, R. Fedele, S. De Nicola, “Madelung fluid description of the generalized derivative nonlinear Schrödinger equation: Special solutions and their stability”, TMF, 160:1 (2009), 229–239; Theoret. and Math. Phys., 160:1 (2009), 1066–1074
Citation in format AMSBIB
\Bibitem{VisGreFed09}
\by A.~Visinescu, D.~Grecu, R.~Fedele, S.~De Nicola
\paper Madelung fluid description of the~generalized derivative nonlinear Schr\"odinger equation: Special solutions and their stability
\jour TMF
\yr 2009
\vol 160
\issue 1
\pages 229--239
\mathnet{http://mi.mathnet.ru/tmf6394}
\crossref{https://doi.org/10.4213/tmf6394}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2603994}
\zmath{https://zbmath.org/?q=an:1179.35314}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...160.1066V}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 160
\issue 1
\pages 1066--1074
\crossref{https://doi.org/10.1007/s11232-009-0098-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269118900022}
Linking options:
  • https://www.mathnet.ru/eng/tmf6394
  • https://doi.org/10.4213/tmf6394
  • https://www.mathnet.ru/eng/tmf/v160/i1/p229
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:901
    Full-text PDF :391
    References:71
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024