Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2009, Volume 159, Number 3, Pages 475–489
DOI: https://doi.org/10.4213/tmf6366
(Mi tmf6366)
 

This article is cited in 7 scientific papers (total in 7 papers)

Nonlinear long-wave models for imperfectly bonded layered waveguides

K. R. Khusnutdinovaa, A. M. Samsonovb, A. S. Zakharova

a Loughborough University
b Ioffe Physico-Technical Institute, Russian Academy of Sciences
Full-text PDF (640 kB) Citations (7)
References:
Abstract: We propose a composite lattice model for describing nonlinear waves in a two-layer waveguide with adhesive bonding. We first consider waves in an anharmonic chain of oscillating dipoles and show that the corresponding asymptotic long-wave model for longitudinal waves coincides with the Boussinesq-type equation previously derived for a macroscopic waveguide using the nonlinear elasticity approach. We also show that in this model, there is no simple analogy between long longitudinal and long flexural waves. Then, for a composite lattice, we derive two new model systems of coupled Boussinesq-type equations for long nonlinear longitudinal waves and conjecture that a similar description exists in the framework of dynamic nonlinear elasticity.
Keywords: lattice model, long nonlinear wave, solitary wave.
English version:
Theoretical and Mathematical Physics, 2009, Volume 159, Issue 3, Pages 819–832
DOI: https://doi.org/10.1007/s11232-009-0070-y
Bibliographic databases:
Language: Russian
Citation: K. R. Khusnutdinova, A. M. Samsonov, A. S. Zakharov, “Nonlinear long-wave models for imperfectly bonded layered waveguides”, TMF, 159:3 (2009), 475–489; Theoret. and Math. Phys., 159:3 (2009), 819–832
Citation in format AMSBIB
\Bibitem{KhuSamZak09}
\by K.~R.~Khusnutdinova, A.~M.~Samsonov, A.~S.~Zakharov
\paper Nonlinear long-wave models for imperfectly bonded layered waveguides
\jour TMF
\yr 2009
\vol 159
\issue 3
\pages 475--489
\mathnet{http://mi.mathnet.ru/tmf6366}
\crossref{https://doi.org/10.4213/tmf6366}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2568565}
\zmath{https://zbmath.org/?q=an:05626846}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...159..819K}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 159
\issue 3
\pages 819--832
\crossref{https://doi.org/10.1007/s11232-009-0070-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269118800015}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350023449}
Linking options:
  • https://www.mathnet.ru/eng/tmf6366
  • https://doi.org/10.4213/tmf6366
  • https://www.mathnet.ru/eng/tmf/v159/i3/p475
  • This publication is cited in the following 7 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:539
    Full-text PDF :220
    References:52
    First page:19
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024