Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2009, Volume 159, Number 3, Pages 399–410
DOI: https://doi.org/10.4213/tmf6359
(Mi tmf6359)
 

Riemann-invariant solutions of the isentropic fluid flow equations

R. Contea, A. M. Grundlandb, B. Huardc

a École normale supérieure de Cachan
b Université du Québec à Trois-Rivières
c Université de Montréal, Centre de Recherches Mathématiques
References:
Abstract: We use a new version of the conditional symmetry method to obtain rank-$k$ solutions expressed in terms of Riemann invariants of the isentropic compressible ideal fluid flow in $3+1$ dimensions. We describe the procedure for constructing bounded solutions in terms of the elliptic Weierstrass $\wp$-function in detail.
Keywords: Riemann invariant, conditional symmetry method, rank-$k$ solution, system of hydrodynamic type.
English version:
Theoretical and Mathematical Physics, 2009, Volume 159, Issue 3, Pages 752–762
DOI: https://doi.org/10.1007/s11232-009-0063-x
Bibliographic databases:
Language: Russian
Citation: R. Conte, A. M. Grundland, B. Huard, “Riemann-invariant solutions of the isentropic fluid flow equations”, TMF, 159:3 (2009), 399–410; Theoret. and Math. Phys., 159:3 (2009), 752–762
Citation in format AMSBIB
\Bibitem{ConGruHua09}
\by R.~Conte, A.~M.~Grundland, B.~Huard
\paper Riemann-invariant solutions of the~isentropic fluid flow equations
\jour TMF
\yr 2009
\vol 159
\issue 3
\pages 399--410
\mathnet{http://mi.mathnet.ru/tmf6359}
\crossref{https://doi.org/10.4213/tmf6359}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2568558}
\zmath{https://zbmath.org/?q=an:05626839}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...159..752C}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 159
\issue 3
\pages 752--762
\crossref{https://doi.org/10.1007/s11232-009-0063-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269118800008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350031460}
Linking options:
  • https://www.mathnet.ru/eng/tmf6359
  • https://doi.org/10.4213/tmf6359
  • https://www.mathnet.ru/eng/tmf/v159/i3/p399
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:406
    Full-text PDF :194
    References:62
    First page:20
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024