Abstract:
We introduce twisting transformations for the heat operator. By the simultaneous use of these transformations, NN solitons are superimposed à la Darboux on a generic smooth potential decaying at infinity, and the corresponding Jost solutions are generated. We also use these twisting operators to study the existence of the related extended resolvent. We study the existence and uniqueness of the extended resolvent in detail in the case of N solitons with N "incoming" rays and one "outgoing" ray.
Citation:
M. Boiti, F. Pempinelli, A. K. Pogrebkov, B. Prinari, “Building an extended resolvent of the heat operator via twisting transformations”, TMF, 159:3 (2009), 364–378; Theoret. and Math. Phys., 159:3 (2009), 721–733
Gino Biondini, Alexander J Bivolcic, Mark A Hoefer, Antonio Moro, “Two-dimensional reductions of the Whitham modulation system for the Kadomtsev–Petviashvili equation”, Nonlinearity, 37:2 (2024), 025012
Wu D., “The Direct Scattering Problem For Perturbed Kadomtsev-Petviashvili Multi Line Solitons”, J. Math. Phys., 62:9 (2021), 091513
Wu D., “The Direct Scattering Problem For the Perturbed Gr(1,2)(> 0)Kadomtsev-Petviash-Vili II Solitons”, Nonlinearity, 33:12 (2020), 6729–6759
Biondini G. Hoefer M.A. Moro A., “Integrability, Exact Reductions and Special Solutions of the Kp-Whitham Equations”, Nonlinearity, 33:8 (2020), 4114–4132
M. Boiti, F. Pempinelli, A. K. Pogrebkov, “Cauchy–Jost function and hierarchy of integrable equations”, Theoret. and Math. Phys., 185:2 (2015), 1599–1613
Zarmi Ya., “Nonlinear Quantum-Dynamical System Based on the Kadomtsev-Petviashvili II Equation”, J. Math. Phys., 54:6 (2013), 063515
M. Boiti, F. Pempinelli, A. K. Pogrebkov, “Extended resolvent of the heat operator with a multisoliton potential”, Theoret. and Math. Phys., 172:2 (2012), 1037–1051
M. Boiti, F. Pempinelli, A. K. Pogrebkov, “Properties of the solitonic potentials of the heat operator”, Theoret. and Math. Phys., 168:1 (2011), 865–874
Boiti M., Pempinelli F., Pogrebkov A.K., “Heat operator with pure soliton potential: Properties of Jost and dual Jost solutions”, J Math Phys, 52:8 (2011), 083506
M. Boiti, F. Pempinelli, A. K. Pogrebkov, B. Prinari, “The equivalence of different approaches for generating multisoliton solutions of the KPII equation”, Theoret. and Math. Phys., 165:1 (2010), 1237–1255