Abstract:
We characterize families of solutions of the static Kirchhoff model of a thin elastic rod physically. These families, which are proved to exist, depend on the behavior of the so-called register and also on the radius and pitch. We describe the energy densities for each of the solutions in terms of the elastic properties and geometric shape of the unstrained rod, which allows determining the selection mechanism for thepreferred helical configurations. This analysis promises to be a fundamental tool for understanding the close connection between the study of elastic deformations in thin rods and coarse-grained models with widespread applications in the natural sciences.
Citation:
M. Argeri, V. Barone, S. De Lillo, G. Lupo, M. Sommacal, “Existence of energy minimums for thin elastic rods in static helical configurations”, TMF, 159:3 (2009), 336–352; Theoret. and Math. Phys., 159:3 (2009), 698–711
\Bibitem{ArgBarDe 09}
\by M.~Argeri, V.~Barone, S.~De Lillo, G.~Lupo, M.~Sommacal
\paper Existence of energy minimums for thin elastic rods in static helical configurations
\jour TMF
\yr 2009
\vol 159
\issue 3
\pages 336--352
\mathnet{http://mi.mathnet.ru/tmf6354}
\crossref{https://doi.org/10.4213/tmf6354}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2568553}
\zmath{https://zbmath.org/?q=an:1175.74047}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...159..698A}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 159
\issue 3
\pages 698--711
\crossref{https://doi.org/10.1007/s11232-009-0058-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269118800003}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350020612}
Linking options:
https://www.mathnet.ru/eng/tmf6354
https://doi.org/10.4213/tmf6354
https://www.mathnet.ru/eng/tmf/v159/i3/p336
This publication is cited in the following 3 articles:
Ablowitz M.J., Barone V., De Lillo S., Sommacal M., “Traveling Waves in Elastic Rods with Arbitrary Curvature and Torsion”, J. Nonlinear Sci., 22:6 (2012), 1013–1040
Matthews J.F., Bergenstrahle M., Beckham G.T., Himmel M.E., Nimlos M.R., Brady J.W., Crowley M.F., “High-temperature behavior of cellulose I”, J. Phys. Chem. B, 115:10 (2011), 2155–2166
De Lillo S., Lupo G., Sommacal M., “Helical configurations of elastic rods in the presence of a long-range interaction potential”, J. Phys. A, 43:8 (2010), 085214, 19 pp.