Abstract:
We consider a system of three arbitrary quantum particles on a three-dimensional lattice that interact via attractive pair contact potentials. We find a condition for a gap to appear in the essential spectrum and prove that there are infinitely many eigenvalues of the Hamiltonian of the corresponding three-particle system in this gap.
Keywords:
three-particle system on a lattice, Schrödinger operator, essential spectrum, discrete spectrum, compact operator.
Citation:
M. I. Muminov, “The infiniteness of the number of eigenvalues in the gap in the essential spectrum for the three-particle Schrödinger operator on a lattice”, TMF, 159:2 (2009), 299–317; Theoret. and Math. Phys., 159:2 (2009), 667–683
\Bibitem{Mum09}
\by M.~I.~Muminov
\paper The~infiniteness of the~number of eigenvalues in the~gap in the~essential spectrum for the~three-particle Schr\"odinger operator on a~lattice
\jour TMF
\yr 2009
\vol 159
\issue 2
\pages 299--317
\mathnet{http://mi.mathnet.ru/tmf6350}
\crossref{https://doi.org/10.4213/tmf6350}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2567343}
\zmath{https://zbmath.org/?q=an:1173.81007}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...159..667M}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 159
\issue 2
\pages 667--683
\crossref{https://doi.org/10.1007/s11232-009-0054-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269080500009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350029465}
Linking options:
https://www.mathnet.ru/eng/tmf6350
https://doi.org/10.4213/tmf6350
https://www.mathnet.ru/eng/tmf/v159/i2/p299
This publication is cited in the following 15 articles:
M. I. Muminov, U. R. Shadiev, “On the Existence of an Eigenvalue of the Generalized Friedrichs Model”, Russ Math., 68:4 (2024), 28
N. M. Aliev, “Asymtotic of the Discrete Spectrum of the Three-Particle Schrödinger Operator on a One-Dimensional Lattice”, Lobachevskii J Math, 44:2 (2023), 491
Z. I. Muminov, N. M. Aliev, T. Radjabov, “On the Discrete Spectrum of the Three-Particle Schrödinger Operator on a Two-Dimensional Lattice”, Lobachevskii J Math, 43:11 (2022), 3239
J.I. Abdullaev, A.M. Khalkhuzhaev, “The existence of eigenvalues of Schrödinger operator on a lattice in the gap of the essential spectrum”, J. Phys.: Conf. Ser., 2070:1 (2021), 012017
O. O. Pokutnyi, “Boundary-Value Problems for the Evolutionary Schrödinger Equation. I”, J Math Sci, 249:4 (2020), 647
Muminov M.I. Ghoshal S.K., “Spectral Attributes of Self-Adjoint Fredholm Operators in Hilbert Space: a Rudimentary Insight”, Complex Anal. Oper. Theory, 13:3 (2019), 1313–1323
Kholmatov Sh.Yu. Muminov Z.I., “Existence of Bound States of N-Body Problem in An Optical Lattice”, J. Phys. A-Math. Theor., 51:26 (2018), 265202
Muminov M.I. Lokman C., “Finiteness of Discrete Spectrum of the Two-Particle Schrodinger Operator on Diamond Lattices”, Nanosyst.-Phys. Chem. Math., 8:3 (2017), 310–316
M. I. Muminov, N. M. Aliev, “Discrete spectrum of a noncompact perturbation of a three-particle Schrödinger operator on a lattice”, Theoret. and Math. Phys., 182:3 (2015), 381–396
M. I. Muminov, T. H. Rasulov, “Infiniteness of the number of eigenvalues embedded in the essential spectrum of a 2×2 operator matrix”, Eurasian Math. J., 5:2 (2014), 60–77
M. I. Muminov, A. M. Hurramov, “Multiplicity of virtual levels at the lower edge of the continuous spectrum of a two-particle Hamiltonian on a lattice”, Theoret. and Math. Phys., 180:3 (2014), 1040–1050
N. M. Aliev, M. E. Muminov, “On the spectrum of the three-particle Hamiltonian on a unidimensional lattice”, Siberian Adv. Math., 25:3 (2015), 155–168
M. I. Muminov, A. M. Hurramov, “Spectral properties of a two-particle Hamiltonian on a lattice”, Theoret. and Math. Phys., 177:3 (2013), 1693–1705
M. É. Muminov, N. M. Aliev, “Spectrum of the three-particle Schrödinger operator on a one-dimensional lattice”, Theoret. and Math. Phys., 171:3 (2012), 754–768
M. I. Muminov, “Formula for the number of eigenvalues of a three-particle Schrödinger operator on a lattice”, Theoret. and Math. Phys., 164:1 (2010), 869–882