Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2009, Volume 159, Number 2, Pages 299–317
DOI: https://doi.org/10.4213/tmf6350
(Mi tmf6350)
 

This article is cited in 15 scientific papers (total in 15 papers)

The infiniteness of the number of eigenvalues in the gap in the essential spectrum for the three-particle Schrödinger operator on a lattice

M. I. Muminov

A. Navoi Samarkand State University
References:
Abstract: We consider a system of three arbitrary quantum particles on a three-dimensional lattice that interact via attractive pair contact potentials. We find a condition for a gap to appear in the essential spectrum and prove that there are infinitely many eigenvalues of the Hamiltonian of the corresponding three-particle system in this gap.
Keywords: three-particle system on a lattice, Schrödinger operator, essential spectrum, discrete spectrum, compact operator.
Received: 14.02.2008
Revised: 22.08.2008
English version:
Theoretical and Mathematical Physics, 2009, Volume 159, Issue 2, Pages 667–683
DOI: https://doi.org/10.1007/s11232-009-0054-y
Bibliographic databases:
Language: Russian
Citation: M. I. Muminov, “The infiniteness of the number of eigenvalues in the gap in the essential spectrum for the three-particle Schrödinger operator on a lattice”, TMF, 159:2 (2009), 299–317; Theoret. and Math. Phys., 159:2 (2009), 667–683
Citation in format AMSBIB
\Bibitem{Mum09}
\by M.~I.~Muminov
\paper The~infiniteness of the~number of eigenvalues in the~gap in the~essential spectrum for the~three-particle Schr\"odinger operator on a~lattice
\jour TMF
\yr 2009
\vol 159
\issue 2
\pages 299--317
\mathnet{http://mi.mathnet.ru/tmf6350}
\crossref{https://doi.org/10.4213/tmf6350}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2567343}
\zmath{https://zbmath.org/?q=an:1173.81007}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...159..667M}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 159
\issue 2
\pages 667--683
\crossref{https://doi.org/10.1007/s11232-009-0054-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269080500009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350029465}
Linking options:
  • https://www.mathnet.ru/eng/tmf6350
  • https://doi.org/10.4213/tmf6350
  • https://www.mathnet.ru/eng/tmf/v159/i2/p299
  • This publication is cited in the following 15 articles:
    1. M. I. Muminov, U. R. Shadiev, “On the Existence of an Eigenvalue of the Generalized Friedrichs Model”, Russ Math., 68:4 (2024), 28  crossref
    2. N. M. Aliev, “Asymtotic of the Discrete Spectrum of the Three-Particle Schrödinger Operator on a One-Dimensional Lattice”, Lobachevskii J Math, 44:2 (2023), 491  crossref
    3. Z. I. Muminov, N. M. Aliev, T. Radjabov, “On the Discrete Spectrum of the Three-Particle Schrödinger Operator on a Two-Dimensional Lattice”, Lobachevskii J Math, 43:11 (2022), 3239  crossref
    4. J.I. Abdullaev, A.M. Khalkhuzhaev, “The existence of eigenvalues of Schrödinger operator on a lattice in the gap of the essential spectrum”, J. Phys.: Conf. Ser., 2070:1 (2021), 012017  crossref
    5. O. O. Pokutnyi, “Boundary-Value Problems for the Evolutionary Schrödinger Equation. I”, J Math Sci, 249:4 (2020), 647  crossref
    6. Muminov M.I. Ghoshal S.K., “Spectral Attributes of Self-Adjoint Fredholm Operators in Hilbert Space: a Rudimentary Insight”, Complex Anal. Oper. Theory, 13:3 (2019), 1313–1323  crossref  mathscinet  isi  scopus
    7. Kholmatov Sh.Yu. Muminov Z.I., “Existence of Bound States of N-Body Problem in An Optical Lattice”, J. Phys. A-Math. Theor., 51:26 (2018), 265202  crossref  mathscinet  isi  scopus  scopus
    8. Muminov M.I. Lokman C., “Finiteness of Discrete Spectrum of the Two-Particle Schrodinger Operator on Diamond Lattices”, Nanosyst.-Phys. Chem. Math., 8:3 (2017), 310–316  crossref  isi
    9. M. I. Muminov, N. M. Aliev, “Discrete spectrum of a noncompact perturbation of a three-particle Schrödinger operator on a lattice”, Theoret. and Math. Phys., 182:3 (2015), 381–396  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    10. M. I. Muminov, T. H. Rasulov, “Infiniteness of the number of eigenvalues embedded in the essential spectrum of a 2×2 operator matrix”, Eurasian Math. J., 5:2 (2014), 60–77  mathnet
    11. M. I. Muminov, A. M. Hurramov, “Multiplicity of virtual levels at the lower edge of the continuous spectrum of a two-particle Hamiltonian on a lattice”, Theoret. and Math. Phys., 180:3 (2014), 1040–1050  mathnet  crossref  crossref  mathscinet  isi  elib  elib
    12. N. M. Aliev, M. E. Muminov, “On the spectrum of the three-particle Hamiltonian on a unidimensional lattice”, Siberian Adv. Math., 25:3 (2015), 155–168  mathnet  crossref  mathscinet
    13. M. I. Muminov, A. M. Hurramov, “Spectral properties of a two-particle Hamiltonian on a lattice”, Theoret. and Math. Phys., 177:3 (2013), 1693–1705  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib  elib
    14. M. É. Muminov, N. M. Aliev, “Spectrum of the three-particle Schrödinger operator on a one-dimensional lattice”, Theoret. and Math. Phys., 171:3 (2012), 754–768  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    15. M. I. Muminov, “Formula for the number of eigenvalues of a three-particle Schrödinger operator on a lattice”, Theoret. and Math. Phys., 164:1 (2010), 869–882  mathnet  crossref  crossref  adsnasa  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:596
    Full-text PDF :253
    References:91
    First page:7
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025