Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2009, Volume 159, Number 2, Pages 220–242
DOI: https://doi.org/10.4213/tmf6344
(Mi tmf6344)
 

This article is cited in 2 scientific papers (total in 2 papers)

Non-Abelian gauge theories, prepotentials, and Abelian differentials

A. V. Marshakovab

a P. N. Lebedev Physical Institute, Russian Academy of Sciences
b Institute for Theoretical and Experimental Physics (Russian Federation State Scientific Center)
Full-text PDF (617 kB) Citations (2)
References:
Abstract: We discuss particular solutions of integrable systems (starting from the well-known dispersionless KdV and Toda hierarchies) that most directly define the generating functions for the Gromov–Witten classes in terms of a rational complex curve. From the mirror theory standpoint, these generating functions can be identified with the simplest prepotentials of complex manifolds, and we present some new exactly calculable examples of such prepotentials. For higher-genus curves, which in this context correspond to non-Abelian gauge theories via the topological string/gauge duality, we construct similar solutions using an extended basis of Abelian differentials, generally with extra singularities at the branch points of the curve.
Keywords: supersymmetric gauge theory, topological string, integrable system.
English version:
Theoretical and Mathematical Physics, 2009, Volume 159, Issue 2, Pages 598–617
DOI: https://doi.org/10.1007/s11232-009-0049-8
Bibliographic databases:
Language: Russian
Citation: A. V. Marshakov, “Non-Abelian gauge theories, prepotentials, and Abelian differentials”, TMF, 159:2 (2009), 220–242; Theoret. and Math. Phys., 159:2 (2009), 598–617
Citation in format AMSBIB
\Bibitem{Mar09}
\by A.~V.~Marshakov
\paper Non-Abelian gauge theories, prepotentials, and Abelian differentials
\jour TMF
\yr 2009
\vol 159
\issue 2
\pages 220--242
\mathnet{http://mi.mathnet.ru/tmf6344}
\crossref{https://doi.org/10.4213/tmf6344}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2567338}
\zmath{https://zbmath.org/?q=an:1174.81009}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...159..598M}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 159
\issue 2
\pages 598--617
\crossref{https://doi.org/10.1007/s11232-009-0049-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269080500004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350035892}
Linking options:
  • https://www.mathnet.ru/eng/tmf6344
  • https://doi.org/10.4213/tmf6344
  • https://www.mathnet.ru/eng/tmf/v159/i2/p220
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:655
    Full-text PDF :257
    References:66
    First page:9
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024