Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2009, Volume 159, Number 2, Pages 194–206
DOI: https://doi.org/10.4213/tmf6342
(Mi tmf6342)
 

This article is cited in 5 scientific papers (total in 5 papers)

A generalization of the Verlinde formula in logarithmic conformal field theory

A. M. Gainutdinov

P. N. Lebedev Physical Institute, Russian Academy of Sciences
Full-text PDF (559 kB) Citations (5)
References:
Abstract: We propose a generalized Verlinde formula associated with $(1,p)$ logarithmic models of two-dimensional conformal field theories, which have applications in statistical physics problems such as the sand-pile model and phase transitions in polymers. This formula gives the integer structure constants in the whole $(3p{-}1)$-dimensional space of vacuum torus amplitudes in which the fusion algebra is a $2p$-dimensional subalgebra.
Keywords: conformal field theory, logarithmic model, nonsemisimple fusion algebra, Verlinde formula.
English version:
Theoretical and Mathematical Physics, 2009, Volume 159, Issue 2, Pages 575–586
DOI: https://doi.org/10.1007/s11232-009-0047-x
Bibliographic databases:
Language: Russian
Citation: A. M. Gainutdinov, “A generalization of the Verlinde formula in logarithmic conformal field theory”, TMF, 159:2 (2009), 194–206; Theoret. and Math. Phys., 159:2 (2009), 575–586
Citation in format AMSBIB
\Bibitem{Gai09}
\by A.~M.~Gainutdinov
\paper A~generalization of the~Verlinde formula in~logarithmic conformal field theory
\jour TMF
\yr 2009
\vol 159
\issue 2
\pages 194--206
\mathnet{http://mi.mathnet.ru/tmf6342}
\crossref{https://doi.org/10.4213/tmf6342}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2567336}
\zmath{https://zbmath.org/?q=an:1173.81018}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...159..575G}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 159
\issue 2
\pages 575--586
\crossref{https://doi.org/10.1007/s11232-009-0047-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269080500002}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70350022609}
Linking options:
  • https://www.mathnet.ru/eng/tmf6342
  • https://doi.org/10.4213/tmf6342
  • https://www.mathnet.ru/eng/tmf/v159/i2/p194
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:562
    Full-text PDF :201
    References:71
    First page:11
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024