Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2009, Volume 159, Number 1, Pages 162–173
DOI: https://doi.org/10.4213/tmf6339
(Mi tmf6339)
 

This article is cited in 6 scientific papers (total in 6 papers)

Diagrammatic theory for the Anderson impurity model: Stationary property of the thermodynamic potential

V. A. Moskalenkoab, P. Entelc, L. A. Dohotarud, R. Citroe

a Joint Institute for Nuclear Research
b Institute of Applied Physics Academy of Sciences of Moldova
c University of Duisburg-Essen
d Technical University of Moldova
e Dipartimento di Fisica "E. R. Caianiello", Università degli Studi di Salerno
Full-text PDF (621 kB) Citations (6)
References:
Abstract: We propose a diagrammatic theory around the atomic limit for the normal state of the Anderson impurity model. The new diagram method is based on Wick's theorem for conduction electrons and a generalized Wick's theorem for strongly correlated impurity electrons, which coincides with the definition of the Kubo cumulant. We prove a linked-cluster theorem for the mean of the evolution operator and obtain Dyson-type equations for the one-particle propagators. The main element in these equations is the impurity electron correlation function, which contains the spin, charge, and pairing fluctuations of the system. We express the system thermodynamic potential in terms of the full propagator of conduction electrons and the correlation function. We establish that the thermodynamic potential is stationary under changes of the correlation function.
Keywords: strongly correlated electron system, Dyson equation, Green's function, Anderson impurity model.
Received: 02.08.2008
English version:
Theoretical and Mathematical Physics, 2009, Volume 159, Issue 1, Pages 551–560
DOI: https://doi.org/10.1007/s11232-009-0044-0
Bibliographic databases:
Language: Russian
Citation: V. A. Moskalenko, P. Entel, L. A. Dohotaru, R. Citro, “Diagrammatic theory for the Anderson impurity model: Stationary property of the thermodynamic potential”, TMF, 159:1 (2009), 162–173; Theoret. and Math. Phys., 159:1 (2009), 551–560
Citation in format AMSBIB
\Bibitem{MosEntDoh09}
\by V.~A.~Moskalenko, P.~Entel, L.~A.~Dohotaru, R.~Citro
\paper Diagrammatic theory for the~Anderson impurity model: Stationary property of the~thermodynamic potential
\jour TMF
\yr 2009
\vol 159
\issue 1
\pages 162--173
\mathnet{http://mi.mathnet.ru/tmf6339}
\crossref{https://doi.org/10.4213/tmf6339}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2547443}
\zmath{https://zbmath.org/?q=an:1177.82072}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...159..551M}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 159
\issue 1
\pages 551--560
\crossref{https://doi.org/10.1007/s11232-009-0044-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269080400010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70349557369}
Linking options:
  • https://www.mathnet.ru/eng/tmf6339
  • https://doi.org/10.4213/tmf6339
  • https://www.mathnet.ru/eng/tmf/v159/i1/p162
  • This publication is cited in the following 6 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:520
    Full-text PDF :242
    References:56
    First page:5
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024