Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2009, Volume 159, Number 1, Pages 5–33
DOI: https://doi.org/10.4213/tmf6330
(Mi tmf6330)
 

This article is cited in 3 scientific papers (total in 3 papers)

A differential $\mathscr U$-module algebra for $\mathscr{U}=\overline{\mathscr U}_{\mathfrak{q}}s\ell(2)$ at an even root of unity

A. M. Semikhatov

P. N. Lebedev Physical Institute, Russian Academy of Sciences
Full-text PDF (764 kB) Citations (3)
References:
Abstract: We show that the full matrix algebra $\operatorname{Mat}_p(\mathbb{C})$ is a $\mathscr{U}$-module algebra for $\mathscr{U}=\overline{\mathscr{U}}_{\mathfrak{q}}s\ell(2)$, a quantum $s\ell(2)t$ group at the $2p$th root of unity. The algebra $\operatorname{Mat}_p(\mathbb{C})$ decomposes into a direct sum of projective $\mathscr{U}$-modules $\mathscr{P}^+_n$ with all odd $n$, $1\le n\le p$. In terms of generators and relations, this $\mathscr{U}$-module algebra is described as the algebra of $q$-differential operators “in one variable”; with the relations $\partial z=\mathfrak{q}-\mathfrak{q}^{-1}+\mathfrak{q}^{-2}z\partial$ and $z^p=\partial^p=0$. These relations define a “parafermionic”; statistics that generalizes the fermionic commutation relations. By the Kazhdan–Lusztig duality, it is to be realized in a manifestly quantum-group-symmetric description of $(p,1)$ logarithmic conformal field models. We extend the Kazhdan–Lusztig duality between $\mathscr{U}$ and the $(p,1)$ logarithmic models by constructing a quantum de Rham complex of the new $\mathscr{U}$-module algebra and discussing its field theory counterpart.
Keywords: quantum group, parafermionic statistics, $\mathscr U$-module algebra, Kazhdan–Lusztig duality, logarithmic conformal field theory.
Received: 13.09.2008
English version:
Theoretical and Mathematical Physics, 2009, Volume 159, Issue 1, Pages 424–447
DOI: https://doi.org/10.1007/s11232-009-0035-1
Bibliographic databases:
Language: Russian
Citation: A. M. Semikhatov, “A differential $\mathscr U$-module algebra for $\mathscr{U}=\overline{\mathscr U}_{\mathfrak{q}}s\ell(2)$ at an even root of unity”, TMF, 159:1 (2009), 5–33; Theoret. and Math. Phys., 159:1 (2009), 424–447
Citation in format AMSBIB
\Bibitem{Sem09}
\by A.~M.~Semikhatov
\paper A differential $\mathscr U$-module algebra for $\mathscr{U}=\overline{\mathscr U}_{\mathfrak{q}}s\ell(2)$ at an~even root of unity
\jour TMF
\yr 2009
\vol 159
\issue 1
\pages 5--33
\mathnet{http://mi.mathnet.ru/tmf6330}
\crossref{https://doi.org/10.4213/tmf6330}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2547434}
\zmath{https://zbmath.org/?q=an:1176.81119}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2009TMP...159..424S}
\transl
\jour Theoret. and Math. Phys.
\yr 2009
\vol 159
\issue 1
\pages 424--447
\crossref{https://doi.org/10.1007/s11232-009-0035-1}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000269080400001}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-70349543799}
Linking options:
  • https://www.mathnet.ru/eng/tmf6330
  • https://doi.org/10.4213/tmf6330
  • https://www.mathnet.ru/eng/tmf/v159/i1/p5
  • This publication is cited in the following 3 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024