Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2000, Volume 124, Number 1, Pages 169–176
DOI: https://doi.org/10.4213/tmf632
(Mi tmf632)
 

This article is cited in 6 scientific papers (total in 6 papers)

Multidimensional analogues of the geometric stst duality

I. G. Korepanov

South Ural State University
Full-text PDF (193 kB) Citations (6)
References:
Abstract: Customarily, the stst duality property for scattering amplitudes, e.g., for the Veneziano amplitude, is naturally related to two-dimensional geometry. Saito and the author previously proposed a simple geometric construction of such amplitudes. Here, we construct analogues of one such amplitude related to multidimensional Euclidean spaces; the three-dimensional case is discussed in detail. The result is a variant of the Regge calculus closely related to integrable models.
Received: 29.11.1999
English version:
Theoretical and Mathematical Physics, 2000, Volume 124, Issue 1, Pages 999–1005
DOI: https://doi.org/10.1007/BF02551073
Bibliographic databases:
Language: Russian
Citation: I. G. Korepanov, “Multidimensional analogues of the geometric stst duality”, TMF, 124:1 (2000), 169–176; Theoret. and Math. Phys., 124:1 (2000), 999–1005
Citation in format AMSBIB
\Bibitem{Kor00}
\by I.~G.~Korepanov
\paper Multidimensional analogues of the geometric $s\leftrightarrow t$ duality
\jour TMF
\yr 2000
\vol 124
\issue 1
\pages 169--176
\mathnet{http://mi.mathnet.ru/tmf632}
\crossref{https://doi.org/10.4213/tmf632}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1821318}
\zmath{https://zbmath.org/?q=an:1032.81560}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 124
\issue 1
\pages 999--1005
\crossref{https://doi.org/10.1007/BF02551073}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000089449800011}
Linking options:
  • https://www.mathnet.ru/eng/tmf632
  • https://doi.org/10.4213/tmf632
  • https://www.mathnet.ru/eng/tmf/v124/i1/p169
  • This publication is cited in the following 6 articles:
    1. Johanna N. Borissova, Bianca Dittrich, “Lorentzian quantum gravity via Pachner moves: one-loop evaluation”, J. High Energ. Phys., 2023:9 (2023)  crossref
    2. Dittrich B., Kaminski W., Steinhaus S., “Discretization Independence Implies Non-Locality in 4D Discrete Quantum Gravity”, Class. Quantum Gravity, 31:24 (2014), 245009  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    3. Dittrich B., Steinhaus S., “Path integral measure and triangulation independence in discrete gravity”, Phys Rev D, 85:4 (2012), 044032  crossref  adsnasa  isi  elib  scopus  scopus
    4. I. G. Korepanov, “Euclidean 4-Simplices and Invariants of Four-Dimensional Manifolds: I. Moves 3333.”, Theoret. and Math. Phys., 131:3 (2002), 765–774  mathnet  crossref  crossref  mathscinet  zmath  isi
    5. I. G. Korepanov, E. V. Martyushev, “A Classical Solution of the Pentagon Equation Related to the Group SL(2)SL(2)”, Theoret. and Math. Phys., 129:1 (2001), 1320–1324  mathnet  crossref  crossref  mathscinet  zmath  isi
    6. Korepanov, IG, “Invariants of PL manifolds from metrized simplicial complexes. Three-dimensional case”, Journal of Nonlinear Mathematical Physics, 8:2 (2001), 196  crossref  mathscinet  zmath  adsnasa  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:347
    Full-text PDF :206
    References:61
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025