|
This article is cited in 1 scientific paper (total in 1 paper)
Evolution in a Gaussian Random Field
V. I. Alkhimov Moscow State Region University
Abstract:
We consider an evolution process in a Gaussian random field $V(q)$ with the mean $\bigl\langle V(q)\bigr\rangle=0$ and the correlation function $W\bigl(|\mathbf{q}-\mathbf{q}^{\prime}|\bigr)\equiv \bigl\langle V(q)V(q^{\prime})\bigr\rangle$ where $\mathbf{q}\in \mathbb{R}^{d}$, $d$ is the dimension of the Euclidean space $\mathbb{R}^{d}$. For the value $\bigl\langle G(\mathbf{q},t;\mathbf{q}_{0})\bigr\rangle$, $t>0$, of the Green's function of the evolution equation averaged over all realizations of the random field, we use the Feynman–Kac formula to establish an integral equation that is invariant with respect to a continuous renormalization group. This invariance property allows using the renormalization group method to find an asymptotic expression for $\bigl\langle G(\mathbf{q},t;\mathbf{q}_{0})\bigr\rangle$, $|\mathbf{q}-\mathbf{q}_{0}|\rightarrow\infty$ and $t\rightarrow\infty$.
Keywords:
random field, correlation function, Green's function, Feynman–Kac formula, renormalization group.
Received: 23.07.2002 Revised: 27.05.2003
Citation:
V. I. Alkhimov, “Evolution in a Gaussian Random Field”, TMF, 139:3 (2004), 512–528; Theoret. and Math. Phys., 139:3 (2004), 878–893
Linking options:
https://www.mathnet.ru/eng/tmf63https://doi.org/10.4213/tmf63 https://www.mathnet.ru/eng/tmf/v139/i3/p512
|
Statistics & downloads: |
Abstract page: | 560 | Full-text PDF : | 206 | References: | 79 | First page: | 1 |
|