Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2004, Volume 139, Number 3, Pages 512–528
DOI: https://doi.org/10.4213/tmf63
(Mi tmf63)
 

This article is cited in 1 scientific paper (total in 1 paper)

Evolution in a Gaussian Random Field

V. I. Alkhimov

Moscow State Region University
Full-text PDF (278 kB) Citations (1)
References:
Abstract: We consider an evolution process in a Gaussian random field $V(q)$ with the mean $\bigl\langle V(q)\bigr\rangle=0$ and the correlation function $W\bigl(|\mathbf{q}-\mathbf{q}^{\prime}|\bigr)\equiv \bigl\langle V(q)V(q^{\prime})\bigr\rangle$ where $\mathbf{q}\in \mathbb{R}^{d}$, $d$ is the dimension of the Euclidean space $\mathbb{R}^{d}$. For the value $\bigl\langle G(\mathbf{q},t;\mathbf{q}_{0})\bigr\rangle$, $t>0$, of the Green's function of the evolution equation averaged over all realizations of the random field, we use the Feynman–Kac formula to establish an integral equation that is invariant with respect to a continuous renormalization group. This invariance property allows using the renormalization group method to find an asymptotic expression for $\bigl\langle G(\mathbf{q},t;\mathbf{q}_{0})\bigr\rangle$, $|\mathbf{q}-\mathbf{q}_{0}|\rightarrow\infty$ and $t\rightarrow\infty$.
Keywords: random field, correlation function, Green's function, Feynman–Kac formula, renormalization group.
Received: 23.07.2002
Revised: 27.05.2003
English version:
Theoretical and Mathematical Physics, 2004, Volume 139, Issue 3, Pages 878–893
DOI: https://doi.org/10.1023/B:TAMP.0000029709.88094.74
Bibliographic databases:
Language: Russian
Citation: V. I. Alkhimov, “Evolution in a Gaussian Random Field”, TMF, 139:3 (2004), 512–528; Theoret. and Math. Phys., 139:3 (2004), 878–893
Citation in format AMSBIB
\Bibitem{Alk04}
\by V.~I.~Alkhimov
\paper Evolution in a Gaussian Random Field
\jour TMF
\yr 2004
\vol 139
\issue 3
\pages 512--528
\mathnet{http://mi.mathnet.ru/tmf63}
\crossref{https://doi.org/10.4213/tmf63}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2085792}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2004TMP...139..878A}
\transl
\jour Theoret. and Math. Phys.
\yr 2004
\vol 139
\issue 3
\pages 878--893
\crossref{https://doi.org/10.1023/B:TAMP.0000029709.88094.74}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000222713300012}
Linking options:
  • https://www.mathnet.ru/eng/tmf63
  • https://doi.org/10.4213/tmf63
  • https://www.mathnet.ru/eng/tmf/v139/i3/p512
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:560
    Full-text PDF :206
    References:79
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024