Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2008, Volume 157, Number 3, Pages 364–372
DOI: https://doi.org/10.4213/tmf6285
(Mi tmf6285)
 

This article is cited in 25 scientific papers (total in 25 papers)

Zeta-nonlocal scalar fields

B. G. Dragovich

University of Belgrade
References:
Abstract: We consider some nonlocal and nonpolynomial scalar field models originating from pp-adic string theory. An infinite number of space-time derivatives is determined by the operator-valued Riemann zeta function through the d'Alembertian in its argument. The construction of the corresponding Lagrangians L starts with the exact Lagrangian Lp for the effective field of the p-adic tachyon string, which is generalized by replacing p with an arbitrary natural number n and then summing Ln over all n. We obtain several basic classical properties of these fields. In particular, we study some solutions of the equations of motion and their tachyon spectra. The field theory with Riemann zeta-function dynamics is also interesting in itself.
Keywords: nonlocal field theory, p-adic string theory, Riemann zeta function.
Received: 25.04.2008
English version:
Theoretical and Mathematical Physics, 2008, Volume 157, Issue 3, Pages 1671–1677
DOI: https://doi.org/10.1007/s11232-008-0139-z
Bibliographic databases:
Language: Russian
Citation: B. G. Dragovich, “Zeta-nonlocal scalar fields”, TMF, 157:3 (2008), 364–372; Theoret. and Math. Phys., 157:3 (2008), 1671–1677
Citation in format AMSBIB
\Bibitem{Dra08}
\by B.~G.~Dragovich
\paper Zeta-nonlocal scalar fields
\jour TMF
\yr 2008
\vol 157
\issue 3
\pages 364--372
\mathnet{http://mi.mathnet.ru/tmf6285}
\crossref{https://doi.org/10.4213/tmf6285}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2499642}
\zmath{https://zbmath.org/?q=an:1155.81361}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...157.1671D}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 157
\issue 3
\pages 1671--1677
\crossref{https://doi.org/10.1007/s11232-008-0139-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000262485800005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-58449102756}
Linking options:
  • https://www.mathnet.ru/eng/tmf6285
  • https://doi.org/10.4213/tmf6285
  • https://www.mathnet.ru/eng/tmf/v157/i3/p364
  • This publication is cited in the following 25 articles:
    1. Viorel Catană, Horia-George Georgescu, Ioana-Maria Flondor, “On a Generalized Class of Nonlinear Equations Defined by Elliptic Symbols”, Bull. Malays. Math. Sci. Soc., 47:4 (2024)  crossref
    2. A. Chávez, M. Ortiz, H. Prado, E.G. Reyes, “Linear equations with infinitely many derivatives and explicit solutions to zeta nonlocal equations”, Nuclear Physics B, 1007 (2024), 116680  crossref
    3. Romildo N. de Lima, César E. T. Ledesma, Alânnio B. Nóbrega, Humberto Prado, “On dual cone theory for Euclidean Bosonic equations”, J. Fixed Point Theory Appl., 26:4 (2024)  crossref
    4. Michele Nardelli, “On Some Mathematical Connections between the Cyclic Universe, Inflationary Universe, p-Adic Inflation, p-Adic Cosmology and Various Sectors of Number Theory”, JMP, 15:11 (2024), 1869  crossref
    5. Chavez A., Prado H., Reyes E.G., “The Laplace Transform and Nonlocal Field Equations”, AIP Conference Proceedings, 2075, eds. Mishonov T., Varonov A., Amer Inst Physics, 2019, 090027-1  crossref  isi
    6. Chavez A., Prado H., Reyes E.G., “A Laplace Transform Approach to Linear Equations With Infinitely Many Derivatives and Zeta-Nonlocal Field Equations”, Adv. Theor. Math. Phys., 23:7 (2019), 1771–1804  crossref  mathscinet  isi  scopus
    7. Dragovich B. Khrennikov A.Yu. Kozyrev S.V. Volovich I.V. Zelenov E.I., “P-Adic Mathematical Physics: the First 30 Years”, P-Adic Numbers Ultrametric Anal. Appl., 9:2 (2017), 87–121  crossref  mathscinet  zmath  isi  scopus
    8. Aref'eva I.Ya. Djordjevic G.S. Khrennikov A.Yu. Kozyrev S.V. Rakic Z. Volovich I.V., “P-Adic Mathematical Physics and B. Dragovich Research”, P-Adic Numbers Ultrametric Anal. Appl., 9:1 (2017), 82–85  crossref  mathscinet  zmath  isi  scopus
    9. Prado H., Reyes E.G., “On Equations With Infinitely Many Derivatives: Integral Transforms and the Cauchy Problem”, 2nd International Conference on Mathematical Modeling in Physical Sciences 2013, Journal of Physics Conference Series, 490, eds. Vagenas E., Vlachos D., IOP Publishing Ltd, 2014, 012044  crossref  isi  scopus
    10. Mauricio Bravo Vera, “Nonlinear Equations of Infinite Order Defined by an Elliptic Symbol”, International Journal of Mathematics and Mathematical Sciences, 2014 (2014), 1  crossref
    11. Koshelev A.S., “Stable Analytic Bounce in Non-Local Einstein-Gauss-Bonnet Cosmology”, Class. Quantum Gravity, 30:15 (2013), 155001  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    12. Gorka P., Prado H., Reyes E.G., “On a General Class of Nonlocal Equations”, Ann. Henri Poincare, 14:4 (2013), 947–966  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    13. Gorka P., Prado H., Reyes E.G., “The initial value problem for ordinary differential equations with infinitely many derivatives”, Classical Quantum Gravity, 29:6 (2012), 065017  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    14. Biswas T., Koshelev A.S., Mazumdar A., Vernov S.Yu., “Stable Bounce and Inflation in Non-Local Higher Derivative Cosmology”, J. Cosmol. Astropart. Phys., 2012, no. 8, 024  crossref  mathscinet  isi  elib  scopus
    15. Biswas T., Kapusta J.I., Reddy A., “Thermodynamics of String Field Theory Motivated Nonlocal Models”, J. High Energy Phys., 2012, no. 12, 008  crossref  mathscinet  isi  scopus
    16. Górka P., Prado H., Reyes E.G., “Nonlinear Equations with Infinitely many Derivatives”, Complex Anal. Oper. Theory, 5:1 (2011), 313–323  crossref  mathscinet  zmath  isi  elib  scopus  scopus
    17. Vernov S.Yu., “Localization of nonlocal cosmological models with quadratic potentials in the case of double roots”, Class. Quantum Grav., 27:3 (2010), 035006, 16 pp.  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    18. B. G. Dragovich, “The $p$-adic sector of the adelic string”, Theoret. and Math. Phys., 163:3 (2010), 768–773  mathnet  crossref  crossref  mathscinet  adsnasa  isi
    19. B. G. Dragovich, “Nonlocal dynamics of $p$-adic strings”, Theoret. and Math. Phys., 164:3 (2010), 1151–1155  mathnet  crossref  crossref  adsnasa  isi
    20. Biswas T., Cembranos J.A.R., Kapusta J.I., “Thermodynamics and cosmological constant of non-local field theories from p-adic strings”, Journal of High Energy Physics, 2010, no. 10, 048  crossref  mathscinet  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:637
    Full-text PDF :220
    References:94
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025