Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2000, Volume 124, Number 1, Pages 95–109
DOI: https://doi.org/10.4213/tmf628
(Mi tmf628)
 

This article is cited in 1 scientific paper (total in 1 paper)

Adelic Feynman amplitudes in lower orders of perturbation theory

É. Yu. Lerner, M. D. Missarov

Kazan State University
Full-text PDF (280 kB) Citations (1)
References:
Abstract: We formulate convergency conditions for adelic Feynman amplitudes and prove that for spaces of sufficiently high dimension, there exists a nonempty domain in the space of powers of propagators in which the adelic amplitude is correctly defined. We investigate an analytic continuation w.r.t. the power of propagators in amplitudes of the $\varphi^4$ theory in the third and fourth order of the perturbation theory. We demonstrate that these amplitudes cannot be continued to the whole complex plane (assuming the validity of the Riemann hypothesis about zeros of the zeta-function) and physically meaningful values of the propagator powers lie at the boundary of the analyticity domain.
Received: 06.12.1999
English version:
Theoretical and Mathematical Physics, 2000, Volume 124, Issue 1, Pages 938–949
DOI: https://doi.org/10.1007/BF02551069
Bibliographic databases:
Language: Russian
Citation: É. Yu. Lerner, M. D. Missarov, “Adelic Feynman amplitudes in lower orders of perturbation theory”, TMF, 124:1 (2000), 95–109; Theoret. and Math. Phys., 124:1 (2000), 938–949
Citation in format AMSBIB
\Bibitem{LerMis00}
\by \'E.~Yu.~Lerner, M.~D.~Missarov
\paper Adelic Feynman amplitudes in lower orders of perturbation theory
\jour TMF
\yr 2000
\vol 124
\issue 1
\pages 95--109
\mathnet{http://mi.mathnet.ru/tmf628}
\crossref{https://doi.org/10.4213/tmf628}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=1821315}
\zmath{https://zbmath.org/?q=an:1031.81569}
\elib{https://elibrary.ru/item.asp?id=13347555}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 124
\issue 1
\pages 938--949
\crossref{https://doi.org/10.1007/BF02551069}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000089449800007}
Linking options:
  • https://www.mathnet.ru/eng/tmf628
  • https://doi.org/10.4213/tmf628
  • https://www.mathnet.ru/eng/tmf/v124/i1/p95
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024