Processing math: 100%
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2008, Volume 156, Number 3, Pages 454–464
DOI: https://doi.org/10.4213/tmf6259
(Mi tmf6259)
 

This article is cited in 5 scientific papers (total in 5 papers)

Power and exponential asymptotic forms of correlation functions

G. A. Martynov

Institute of Physical Chemistry, Russian Academy of Sciences
Full-text PDF (349 kB) Citations (5)
References:
Abstract: Using the Ornstein–Zernike equation, we obtain two asymptotic equations, one describing the exponential asymptotic behavior and the other describing the power asymptotic behavior of the total correlation function h(r). We show that the exponential asymptotic form is applicable only on a bounded distance interval l<r<L. The power asymptotic form is always applicable for r>L and reproduces the form of the interaction potential. In this case, as the density of a rarified gas decreases, Ll, the exponential asymptotic form vanishes, and only the power asymptotic form remains. Conversely, as the critical point is approached, L, and the applicability domain of the exponential asymptotic form increases without bound.
Keywords: asymptotic form, correlation function, Ornstein–Zernike equation.
Received: 02.10.2007
Revised: 05.02.2008
English version:
Theoretical and Mathematical Physics, 2008, Volume 156, Issue 3, Pages 1356–1364
DOI: https://doi.org/10.1007/s11232-008-0112-x
Bibliographic databases:
Language: Russian
Citation: G. A. Martynov, “Power and exponential asymptotic forms of correlation functions”, TMF, 156:3 (2008), 454–464; Theoret. and Math. Phys., 156:3 (2008), 1356–1364
Citation in format AMSBIB
\Bibitem{Mar08}
\by G.~A.~Martynov
\paper Power and exponential asymptotic forms of correlation functions
\jour TMF
\yr 2008
\vol 156
\issue 3
\pages 454--464
\mathnet{http://mi.mathnet.ru/tmf6259}
\crossref{https://doi.org/10.4213/tmf6259}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2488951}
\zmath{https://zbmath.org/?q=an:1156.82003}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...156.1356M}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 156
\issue 3
\pages 1356--1364
\crossref{https://doi.org/10.1007/s11232-008-0112-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000259821400010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-53349099406}
Linking options:
  • https://www.mathnet.ru/eng/tmf6259
  • https://doi.org/10.4213/tmf6259
  • https://www.mathnet.ru/eng/tmf/v156/i3/p454
  • This publication is cited in the following 5 articles:
    1. Vangara R., Brown D.C.R., van Swol F., Petsev D.N., “Electrolyte solution structure and its effect on the properties of electric double layers with surface charge regulation”, J. Colloid Interface Sci., 488 (2017), 180–189  crossref  isi  elib  scopus
    2. Fleharty M.E., van Swol F., Petsev D.N., “Solvent Role in the Formation of Electric Double Layers With Surface Charge Regulation: a Bystander Or a Key Participant?”, Phys. Rev. Lett., 116:4 (2016), 048301  crossref  adsnasa  isi  scopus  scopus
    3. A. A. Shkola, “Driving Force of Metals Hydrogenation Process. ІІ. As Cast Titanium”, Metallofiz. Noveishie Tekhnol., 36:5 (2016), 689  crossref
    4. V. B. Bobrov, S. A. Triger, “Critical opalescence and the true dielectric state in a Coulomb system”, Theoret. and Math. Phys., 183:1 (2015), 553–566  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    5. Evans R., Henderson J.R., “Pair correlation function decay in models of simple fluids that contain dispersion interactions”, J. Phys.: Condens. Matter., 21:47 (2009), 474220, 11 pp.  crossref  zmath  adsnasa  isi  scopus  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:870
    Full-text PDF :337
    References:71
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025