Abstract:
We consider fertile hard-core (HC) models with three states on
a homogeneous Cayley tree. It is known that four types of such models exist.
For these models, we describe the translation-invariant and periodic HC Gibbs
measures. We also construct a uncountable set of nonperiodic Gibbs measures.
Keywords:
Cayley tree, configuration, HC model, Gibbs measure.
Citation:
U. A. Rozikov, Sh. A. Shoyusupov, “Fertile HC models with three states on a Cayley tree”, TMF, 156:3 (2008), 412–424; Theoret. and Math. Phys., 156:3 (2008), 1319–1330
\Bibitem{RozSho08}
\by U.~A.~Rozikov, Sh.~A.~Shoyusupov
\paper Fertile HC models with three states on a~Cayley tree
\jour TMF
\yr 2008
\vol 156
\issue 3
\pages 412--424
\mathnet{http://mi.mathnet.ru/tmf6256}
\crossref{https://doi.org/10.4213/tmf6256}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2490265}
\zmath{https://zbmath.org/?q=an:1157.82312}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...156.1319R}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 156
\issue 3
\pages 1319--1330
\crossref{https://doi.org/10.1007/s11232-008-0109-5}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000259821400007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-53349173709}
Linking options:
https://www.mathnet.ru/eng/tmf6256
https://doi.org/10.4213/tmf6256
https://www.mathnet.ru/eng/tmf/v156/i3/p412
This publication is cited in the following 24 articles:
B. Z. Tozhiboev, R. M. Khakimov, “Mery Gibbsa dlya HC-modeli v sluchae grafa tipa “klyuch” na dereve Keli”, Matem. zametki, 117:4 (2025), 575–590
N. M. Khatamov, “Periodic Gibbs Measures and Their Extremality for the HC-Blume–Capel Model in the Case of a Wand with a Chemical Potential on a Cayley Tree”, Math. Notes, 115:1 (2024), 89–101
Rustamjon Khakimov, Kamola Umirzakova, “Periodic Gibbs Measures for Three-State Hard-Core Models in the Case Wand”, Z. mat. fiz. anal. geom., 20:1 (2024), 66
R. M. Khakimov, B. Z. Tozhiboev, “Gibbs measures for fertile models with hard-core interactions
and four states”, Theoret. and Math. Phys., 219:2 (2024), 823–838
Benedikt Jahnel, Utkir Rozikov, “Gibbs measures for hardcore-solid-on-solid models on Cayley trees”, J. Stat. Mech., 2024:7 (2024), 073202
Rustamjon Khakimov, Muhtorjon Makhammadaliev, Kamola Umirzakova, “Alternative Gibbs measure for fertile three-state Hard-Core models on a Cayley tree”, Phase Transitions, 2024, 1
R. M. Khakimov, M. T. Makhammadaliev, F. H. Haydarov, “New class of Gibbs measures for two-state hard-core model on a Cayley tree”, Infin. Dimens. Anal. Quantum. Probab. Relat. Top., 26:04 (2023)
N. M. Khatamov, “Extremality of Gibbs Measures for the HC-Blume–Capel Model on the Cayley Tree”, Math. Notes, 111:5 (2022), 768–781
N. M. Khatamov, “Ekstremalnost nekotorykh mer Gibbsa dlya HC-modeli Blyuma-Kapelya na dereve Keli”, Vestn. Udmurtsk. un-ta. Matem. Mekh. Kompyut. nauki, 32:2 (2022), 256–277
N. M. Khatamov, “Periodic Gibbs Measures and Their Extremes for the HC–Blume–Capel Model in the Case of a "Wand" on the Cayley Tree”, Lobachevskii J Math, 43:9 (2022), 2515
R. M. Khakimov, K. O. Umirzakova, “Extremality of the unique translation-invariant Gibbs measure for hard-core models on the Cayley tree of order k=3”, Theoret. and Math. Phys., 206:1 (2021), 97–108
R. M. Khakimov, M. T. Makhammadaliev, “Uniqueness and nonuniqueness conditions for weakly periodic Gibbs measures for the hard-core model”, Theoret. and Math. Phys., 204:2 (2020), 1059–1078
Kissel S. Kuelske C. Rozikov U.A., “Hard-Core and Soft-Core Widom-Rowlinson Models on Cayley Trees”, J. Stat. Mech.-Theory Exp., 2019, 043204
R. M. Khakimov, “Weakly periodic Gibbs measures for HC-models on Cayley trees”, Siberian Math. J., 59:1 (2018), 147–156
R. M. Khakimov, “Gibbs measures for fertile hard-core models on the Cayley tree”, Theoret. and Math. Phys., 186:2 (2016), 294–305
O. N. Khakimov, “A p-adic hard-core model with three states on a Cayley tree”, Siberian Math. J., 57:4 (2016), 726–734
Gandolfo D. Rozikov U.A. Ruiz J., “on Four State Hard Core Models on the Cayley Tree”, Markov Process. Relat. Fields, 22:2 (2016), 359–377
R. M. Khakimov, “Weakly Periodic Gibbs Measures in the HC-Model for a Normal Divisor of Index Four”, Ukr Math J, 67:10 (2016), 1584
Rustam M. Khakimov, “The uniqueness of the translation-invariant Gibbs measure for four state HC-models on a Cayley tree”, Zhurn. SFU. Ser. Matem. i fiz., 8:2 (2015), 165–172
Rozikov U.A., Khakimov R.M., “Gibbs Measures For the Fertile Three-State Hard-Core Models on a Cayley Tree”, Queueing Syst., 81:1 (2015), 49–69