Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2008, Volume 156, Number 3, Pages 378–397
DOI: https://doi.org/10.4213/tmf6254
(Mi tmf6254)
 

Shapovalov determinant for loop superalgebras

A. V. Lebedevab, D. A. Leitesc

a N. I. Lobachevski State University of Nizhni Novgorod
b Max Planck Institute for Mathematics in the Sciences
c Stockholm University
References:
Abstract: For the Kac–Moody superalgebra associated with the loop superalgebra with values in a finite-dimensional Lie superalgebra $\mathfrak g$, we show what its quadratic Casimir element is equal to if the Casimir element for $\mathfrak g$ is known (if $\mathfrak g$ has an even invariant supersymmetric bilinear form). The main tool is the Wick normal form of the even quadratic Casimir operator for the Kac–Moody superalgebra associated with $\mathfrak g$; this Wick normal form is independently interesting. If $\mathfrak g$ has an odd invariant supersymmetric bilinear form, then we compute the cubic Casimir element. In addition to the simple Lie superalgebras $\mathfrak g=\mathfrak g(A)$ with a Cartan matrix $A$ for which the Shapovalov determinant was known, we consider the Poisson Lie superalgebra $\mathfrak{poi}(0\mid n)$ and the related Kac–Moody superalgebra.
Keywords: Lie superalgebra, Shapovalov determinant.
Received: 07.02.2007
English version:
Theoretical and Mathematical Physics, 2008, Volume 156, Issue 3, Pages 1292–1307
DOI: https://doi.org/10.1007/s11232-008-0107-7
Bibliographic databases:
Language: Russian
Citation: A. V. Lebedev, D. A. Leites, “Shapovalov determinant for loop superalgebras”, TMF, 156:3 (2008), 378–397; Theoret. and Math. Phys., 156:3 (2008), 1292–1307
Citation in format AMSBIB
\Bibitem{LebLei08}
\by A.~V.~Lebedev, D.~A.~Leites
\paper Shapovalov determinant for loop superalgebras
\jour TMF
\yr 2008
\vol 156
\issue 3
\pages 378--397
\mathnet{http://mi.mathnet.ru/tmf6254}
\crossref{https://doi.org/10.4213/tmf6254}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2490263}
\zmath{https://zbmath.org/?q=an:1155.81336}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...156.1292L}
\elib{https://elibrary.ru/item.asp?id=11161474}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 156
\issue 3
\pages 1292--1307
\crossref{https://doi.org/10.1007/s11232-008-0107-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000259821400005}
\elib{https://elibrary.ru/item.asp?id=13586004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-53349160486}
Linking options:
  • https://www.mathnet.ru/eng/tmf6254
  • https://doi.org/10.4213/tmf6254
  • https://www.mathnet.ru/eng/tmf/v156/i3/p378
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025