Abstract:
We consider the harmonic and anharmonic chains of oscillators with
self-consistent stochastic reservoirs and derive an integral representation
(à la Feynman–Kac) for the correlations, in particular, for the heat flow.
For the harmonic chain, we give a new proof that its thermal
conductivity is finite in the steady state. Based on this integral
representation for the correlations and a perturbative analysis, the approach
is quite general and can be extended to more intricate systems.
Citation:
R. Falcao, A. Francisco Neto, E. Pereira, “Analytic approach to the (an)harmonic crystal chains with
self-consistent stochastic reservoirs”, TMF, 156:1 (2008), 138–146; Theoret. and Math. Phys., 156:1 (2008), 1081–1088
This publication is cited in the following 15 articles:
Humberto C F Lemos, Emmanuel Pereira, “Heat current properties of a rotor chain type model with next-nearest-neighbor interactions”, J. Phys. A: Math. Theor., 57:21 (2024), 215001
S. H. C. Silva, “Effective classical harmonic crystal with thermal rectification”, Theoret. and Math. Phys., 204:1 (2020), 918–926
Emmanuel Pereira, “Thermal rectification in classical and quantum systems: Searching for efficient thermal diodes”, EPL, 126:1 (2019), 14001
Emmanuel Pereira, “Requisite ingredients for thermal rectification”, Phys. Rev. E, 96:1 (2017)
Avila R.R., Pereira E., Teixeira D.L., “Length Dependence of Heat Conduction in (An)Harmonic Chains With Asymmetries Or Long Range Interparticle Interactions”, Physica A, 423 (2015), 51–60
Mendonca M.S., Pereira E., “Effective Approach For Anharmonic Chains of Oscillators: Analytical Description of Negative Differential Thermal Resistance”, Phys. Lett. A, 379:36 (2015), 1983–1989
Emmanuel Pereira, Mateus S Mendonça, Humberto C F Lemos, “Heat flow in anharmonic crystals with internal and external stochastic baths: a convergent polymer expansion for a model with discrete time and long range interparticle interaction”, J. Phys. A: Math. Theor., 48:37 (2015), 375203
Pereira E., Avila R.R., “Increasing Thermal Rectification: Effects of Long-Range Interactions”, Phys. Rev. E, 88:3 (2013), 032139
Saaskilahti K., Oksanen J., Tulkki J., “Thermal Balance and Quantum Heat Transport in Nanostructures Thermalized by Local Langevin Heat Baths”, Phys. Rev. E, 88:1 (2013), 012128
Pereira E., Lemos H.C.F., Avila R.R., “Ingredients of thermal rectification: The case of classical and quantum self-consistent harmonic chains of oscillators”, Phys Rev E, 84:6, Part 1 (2011), 061135
Pereira E., “Nontrivial properties of heat flow: Analytical study of some anharmonic lattice microscopic models”, Physica a-Statistical Mechanics and its Applications, 390:23–24 (2011), 4131–4143
Pereira E., Solha R.B., “Some properties of the thermal conductivity of chains of oscillators”, Phys. Rev. E, 81:6 (2010), 062101, 4 pp.
Pereira E., Lemos H.C.F., “Symmetry of heat conductivity in inhomogeneous quantum chains”, J. Phys. A, 42:22 (2009), 225006, 9 pp.
Pereira E., “Approximative analytical method for some Langevin dynamical systems”, Phys. A, 388:22 (2009), 4695–4702
Pereira E., Lemos H.C.F., “Symmetry properties of heat conduction in inhomogeneous materials”, Phys. Rev. E (3), 78:3 (2008), 031108, 6 pp.