Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2008, Volume 155, Number 3, Pages 439–452
DOI: https://doi.org/10.4213/tmf6221
(Mi tmf6221)
 

This article is cited in 11 scientific papers (total in 11 papers)

Coherent states for the Hartmann potential

N. Kandirmaza, N. Ünalb

a University of Mersin
b Akdeniz University
References:
Abstract: We obtain the coherent states for a particle in the noncentral Hartmann potential by transforming the problem into four isotropic oscillators evolving in a parametric time. We use path integration over the holomorphic coordinates to find the quantum states for these oscillators. The decomposition of the transition amplitudes gives the coherent states and their parametric-time evolution for the particle in the Hartmann potential. We also derive the coherent states in the parabolic coordinates by considering the transition amplitudes between the coherent states and eigenstates in the configuration space.
Keywords: Hartmann potential, noncentral potential, coherent state in parametric time, path integral.
Received: 10.01.2007
Revised: 14.06.2007
English version:
Theoretical and Mathematical Physics, 2008, Volume 155, Issue 3, Pages 884–895
DOI: https://doi.org/10.1007/s11232-008-0074-z
Bibliographic databases:
Language: Russian
Citation: N. Kandirmaz, N. Ünal, “Coherent states for the Hartmann potential”, TMF, 155:3 (2008), 439–452; Theoret. and Math. Phys., 155:3 (2008), 884–895
Citation in format AMSBIB
\Bibitem{KanUna08}
\by N.~Kandirmaz, N.~\"Unal
\paper Coherent states for the~Hartmann potential
\jour TMF
\yr 2008
\vol 155
\issue 3
\pages 439--452
\mathnet{http://mi.mathnet.ru/tmf6221}
\crossref{https://doi.org/10.4213/tmf6221}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2516418}
\zmath{https://zbmath.org/?q=an:1145.81380}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...155..884K}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 155
\issue 3
\pages 884--895
\crossref{https://doi.org/10.1007/s11232-008-0074-z}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000257145800004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-46249100136}
Linking options:
  • https://www.mathnet.ru/eng/tmf6221
  • https://doi.org/10.4213/tmf6221
  • https://www.mathnet.ru/eng/tmf/v155/i3/p439
  • This publication is cited in the following 11 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024