Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2008, Volume 155, Number 2, Pages 344–355
DOI: https://doi.org/10.4213/tmf6216
(Mi tmf6216)
 

This article is cited in 14 scientific papers (total in 14 papers)

Symmetries of nonlinear hyperbolic systems of the Toda chain type

V. V. Sokolova, S. Ya. Startsevb

a L. D. Landau Institute for Theoretical Physics, Russian Academy of Sciences
b Institute of Mathematics with Computing Centre, Ufa Science Centre, Russian Academy of Sciences
References:
Abstract: We consider hyperbolic systems of equations that have full sets of integrals along both characteristics. The best known example of models of this type is given by two-dimensional open Toda chains. For systems that have integrals, we construct a differential operator that takes integrals into symmetries. For systems of the chosen type, this proves the existence of higher symmetries dependent on arbitrary functions.
Keywords: Liouville equation, Toda chain, integral, higher symmetry, hyperbolic system of partial differential equations, Noether theorem.
Received: 30.06.2007
English version:
Theoretical and Mathematical Physics, 2008, Volume 155, Issue 2, Pages 802–811
DOI: https://doi.org/10.1007/s11232-008-0069-9
Bibliographic databases:
Language: Russian
Citation: V. V. Sokolov, S. Ya. Startsev, “Symmetries of nonlinear hyperbolic systems of the Toda chain type”, TMF, 155:2 (2008), 344–355; Theoret. and Math. Phys., 155:2 (2008), 802–811
Citation in format AMSBIB
\Bibitem{SokSta08}
\by V.~V.~Sokolov, S.~Ya.~Startsev
\paper Symmetries of nonlinear hyperbolic systems of the~Toda chain type
\jour TMF
\yr 2008
\vol 155
\issue 2
\pages 344--355
\mathnet{http://mi.mathnet.ru/tmf6216}
\crossref{https://doi.org/10.4213/tmf6216}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2446138}
\zmath{https://zbmath.org/?q=an:1167.37034}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...155..802S}
\elib{https://elibrary.ru/item.asp?id=11649554}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 155
\issue 2
\pages 802--811
\crossref{https://doi.org/10.1007/s11232-008-0069-9}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000256083500013}
\elib{https://elibrary.ru/item.asp?id=13592742}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-43949119437}
Linking options:
  • https://www.mathnet.ru/eng/tmf6216
  • https://doi.org/10.4213/tmf6216
  • https://www.mathnet.ru/eng/tmf/v155/i2/p344
  • This publication is cited in the following 14 articles:
    1. S Ya Startsev, “Darboux integrability of hyperbolic partial differential equations: is it a property of integrals rather than equations?”, J. Phys. A: Math. Theor., 58:2 (2025), 025206  crossref
    2. Sergey V Smirnov, “Integral preserving discretization of 2D Toda lattices”, J. Phys. A: Math. Theor., 56:26 (2023), 265204  crossref
    3. A. B. Shabat, V. E. Adler, “Cartan matrices in the Toda–Darboux chain theory”, Theoret. and Math. Phys., 196:1 (2018), 957–964  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    4. S. Ya. Startsev, “Structure of set of symmetries for hyperbolic systems of Liouville type and generalized Laplace invariants”, Ufa Math. J., 10:4 (2018), 103–110  mathnet  crossref  isi
    5. S. Ya. Startsev, “Symmetry Drivers and Formal Integrals of Hyperbolic Systems of Equations”, J. Math. Sci. (N. Y.), 252:2 (2021), 232–241  mathnet  crossref  mathscinet
    6. Sergey Ya. Startsev, “Formal Integrals and Noether Operators of Nonlinear Hyperbolic Partial Differential Systems Admitting a Rich Set of Symmetries”, SIGMA, 13 (2017), 034, 20 pp.  mathnet  crossref
    7. Startsev S.Ya., “Relationships Between Symmetries Depending on Arbitrary Functions and Integrals of Discrete Equations”, J. Phys. A-Math. Theor., 50:50 (2017), 50LT01  crossref  mathscinet  zmath  isi  scopus
    8. S. V. Smirnov, “Darboux integrability of discrete two-dimensional Toda lattices”, Theoret. and Math. Phys., 182:2 (2015), 189–210  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    9. Startsev S.Ya., “Darboux Integrable Discrete Equations Possessing An Autonomous First-Order Integral”, J. Phys. A-Math. Theor., 47:10 (2014), 105204  crossref  mathscinet  zmath  adsnasa  isi  scopus
    10. Kiselev A.V., “Homological Evolutionary Vector Fields in Korteweg-de Vries, Liouville, Maxwell, and Several Other Models”, 7th International Conference on Quantum Theory and Symmetries (QTS7), Journal of Physics Conference Series, 343, IOP Publishing Ltd, 2012, 012058  crossref  isi  scopus
    11. A. V. Kiselev, J. W. van de Leur, “Symmetry algebras of Lagrangian Liouville-type systems”, Theoret. and Math. Phys., 162:2 (2010), 149–162  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi  elib
    12. D. K. Demskoi, “Integrals of open two-dimensional lattices”, Theoret. and Math. Phys., 163:1 (2010), 466–471  mathnet  crossref  crossref  zmath  adsnasa  isi  elib
    13. Demskoi D.K., Lee Jyh-Hao, “On non-Abelian Toda $A_2^{(1)}$ model and related hierarchies”, J. Math. Phys., 50:12 (2009), 123516, 11 pp.  crossref  mathscinet  zmath  adsnasa  isi  scopus
    14. Habibullin I., Zheltukhina N., Pekcan A., “On the classification of Darboux integrable chains”, J. Math. Phys., 49:10 (2008), 102702, 39 pp.  crossref  mathscinet  zmath  adsnasa  isi  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:661
    Full-text PDF :277
    References:83
    First page:7
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025