Abstract:
We investigate the Eden–Staudacher and Beisert–Eden–Staudacher equations
for the anomalous dimension of twist-$2$ operators at a large spin $s$ in
the $\mathcal{N}{=}4$ supersymmetric gauge theory. We reduce these equations to
a set of linear algebraic equations and calculate their kernels analytically.
We demonstrate that in the perturbation theory, the anomalous dimension is
a sum of products of the Euler functions $\zeta(k)$ having the maximum
transcendentality property. We also show that at a large coupling,
the "singular" solution of the Beisert–Eden–Staudacher equation reproduces
the anomalous dimension constants predicted from the string side of the AdS/CFT
correspondence.
Citation:
A. V. Kotikov, L. N. Lipatov, “Eden–Staudacher and Beisert–Eden–Staudacher equations
in the $\mathcal N=4$ supersymmetric gauge theory”, TMF, 155:1 (2008), 117–129; Theoret. and Math. Phys., 155:1 (2008), 606–617
\Bibitem{KotLip08}
\by A.~V.~Kotikov, L.~N.~Lipatov
\paper Eden--Staudacher and Beisert--Eden--Staudacher equations
in the $\mathcal N=4$ supersymmetric gauge theory
\jour TMF
\yr 2008
\vol 155
\issue 1
\pages 117--129
\mathnet{http://mi.mathnet.ru/tmf6197}
\crossref{https://doi.org/10.4213/tmf6197}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2466484}
\zmath{https://zbmath.org/?q=an:1155.81355}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...155..606K}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 155
\issue 1
\pages 606--617
\crossref{https://doi.org/10.1007/s11232-008-0050-7}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000255258900010}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-42449144384}
Linking options:
https://www.mathnet.ru/eng/tmf6197
https://doi.org/10.4213/tmf6197
https://www.mathnet.ru/eng/tmf/v155/i1/p117
This publication is cited in the following 1 articles:
Freyhult L., “Review of AdS/CFT Integrability, Chapter III.4: Twist States and the Cusp Anomalous Dimension”, Lett. Math. Phys., 99:1-3 (2012), 255–276