Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2000, Volume 123, Number 3, Pages 500–515
DOI: https://doi.org/10.4213/tmf619
(Mi tmf619)
 

This article is cited in 2 scientific papers (total in 2 papers)

Distribution functions of binary solutions (exact analytic solution)

G. A. Martynov

Institute of Physical Chemistry, Russian Academy of Sciences
Full-text PDF (251 kB) Citations (2)
References:
Abstract: We show that the general solution of the Ornstein–Zernike system of equations for multicomponent solutions has the form $h_{\alpha\beta}= \sum A_{\alpha\beta}^j\exp(-\lambda_jr)/r$, where $\lambda_j$ are the roots of the transcendental equation $1-\rho\Delta(\lambda_j)=0$ and the amplitudes $A_{\alpha\beta}^j$ can be calculated if the direct correlation functions are given. We investigate the properties of this solution including the behavior of the roots $\lambda_j$ and amplitudes $A_{\alpha\beta}^j$ in both the low-density limit and the vicinity of the critical point. Several relations on $A_{\alpha\beta}^j$ and $C_{\alpha\beta}$ are found. In the vicinity of the critical point, we find the state equation for a liquid, which confirms the Van der Waals similarity hypothesis. The expansion under consideration is asymptotic because we expand functions in series in eigenfunctions of the asymptotic Ornstein–Zernike equation valid at $r\to\infty$.
Received: 11.11.1999
English version:
Theoretical and Mathematical Physics, 2000, Volume 123, Issue 3, Pages 833–845
DOI: https://doi.org/10.1007/BF02551037
Bibliographic databases:
Language: Russian
Citation: G. A. Martynov, “Distribution functions of binary solutions (exact analytic solution)”, TMF, 123:3 (2000), 500–515; Theoret. and Math. Phys., 123:3 (2000), 833–845
Citation in format AMSBIB
\Bibitem{Mar00}
\by G.~A.~Martynov
\paper Distribution functions of binary solutions (exact analytic solution)
\jour TMF
\yr 2000
\vol 123
\issue 3
\pages 500--515
\mathnet{http://mi.mathnet.ru/tmf619}
\crossref{https://doi.org/10.4213/tmf619}
\zmath{https://zbmath.org/?q=an:0968.82026}
\transl
\jour Theoret. and Math. Phys.
\yr 2000
\vol 123
\issue 3
\pages 833--845
\crossref{https://doi.org/10.1007/BF02551037}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000088926700011}
Linking options:
  • https://www.mathnet.ru/eng/tmf619
  • https://doi.org/10.4213/tmf619
  • https://www.mathnet.ru/eng/tmf/v123/i3/p500
  • This publication is cited in the following 2 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:364
    Full-text PDF :210
    References:53
    First page:2
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024