Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2008, Volume 154, Number 3, Pages 510–535
DOI: https://doi.org/10.4213/tmf6184
(Mi tmf6184)
 

This article is cited in 16 scientific papers (total in 16 papers)

Factorizable ribbon quantum groups in logarithmic conformal field theories

A. M. Semikhatov

P. N. Lebedev Physical Institute, Russian Academy of Sciences
References:
Abstract: We review the properties of quantum groups occurring as the Kazhdan–Lusztig dual to logarithmic conformal field theory models. These quantum groups at even roots of unity are not quasitriangular but are factorizable and have a ribbon structure; the modular group representation on their center coincides with the representation on generalized characters of the chiral algebra in logarithmic conformal field models.
Keywords: quantum group, factorizable structure, ribbon structure, modular group, Grothendieck ring, Kazhdan–Lusztig correspondence, logarithmic conformal field theory.
English version:
Theoretical and Mathematical Physics, 2008, Volume 154, Issue 3, Pages 433–453
DOI: https://doi.org/10.1007/s11232-008-0037-4
Bibliographic databases:
Language: Russian
Citation: A. M. Semikhatov, “Factorizable ribbon quantum groups in logarithmic conformal field theories”, TMF, 154:3 (2008), 510–535; Theoret. and Math. Phys., 154:3 (2008), 433–453
Citation in format AMSBIB
\Bibitem{Sem08}
\by A.~M.~Semikhatov
\paper Factorizable ribbon quantum groups in logarithmic conformal field
theories
\jour TMF
\yr 2008
\vol 154
\issue 3
\pages 510--535
\mathnet{http://mi.mathnet.ru/tmf6184}
\crossref{https://doi.org/10.4213/tmf6184}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2431560}
\zmath{https://zbmath.org/?q=an:1166.81024}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...154..433S}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 154
\issue 3
\pages 433--453
\crossref{https://doi.org/10.1007/s11232-008-0037-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000254207700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-41049090961}
Linking options:
  • https://www.mathnet.ru/eng/tmf6184
  • https://doi.org/10.4213/tmf6184
  • https://www.mathnet.ru/eng/tmf/v154/i3/p510
  • This publication is cited in the following 16 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:763
    Full-text PDF :324
    References:113
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024