Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2008, Volume 154, Number 3, Pages 510–535
DOI: https://doi.org/10.4213/tmf6184
(Mi tmf6184)
 

This article is cited in 16 scientific papers (total in 16 papers)

Factorizable ribbon quantum groups in logarithmic conformal field theories

A. M. Semikhatov

P. N. Lebedev Physical Institute, Russian Academy of Sciences
References:
Abstract: We review the properties of quantum groups occurring as the Kazhdan–Lusztig dual to logarithmic conformal field theory models. These quantum groups at even roots of unity are not quasitriangular but are factorizable and have a ribbon structure; the modular group representation on their center coincides with the representation on generalized characters of the chiral algebra in logarithmic conformal field models.
Keywords: quantum group, factorizable structure, ribbon structure, modular group, Grothendieck ring, Kazhdan–Lusztig correspondence, logarithmic conformal field theory.
English version:
Theoretical and Mathematical Physics, 2008, Volume 154, Issue 3, Pages 433–453
DOI: https://doi.org/10.1007/s11232-008-0037-4
Bibliographic databases:
Language: Russian
Citation: A. M. Semikhatov, “Factorizable ribbon quantum groups in logarithmic conformal field theories”, TMF, 154:3 (2008), 510–535; Theoret. and Math. Phys., 154:3 (2008), 433–453
Citation in format AMSBIB
\Bibitem{Sem08}
\by A.~M.~Semikhatov
\paper Factorizable ribbon quantum groups in logarithmic conformal field
theories
\jour TMF
\yr 2008
\vol 154
\issue 3
\pages 510--535
\mathnet{http://mi.mathnet.ru/tmf6184}
\crossref{https://doi.org/10.4213/tmf6184}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2431560}
\zmath{https://zbmath.org/?q=an:1166.81024}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...154..433S}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 154
\issue 3
\pages 433--453
\crossref{https://doi.org/10.1007/s11232-008-0037-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000254207700007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-41049090961}
Linking options:
  • https://www.mathnet.ru/eng/tmf6184
  • https://doi.org/10.4213/tmf6184
  • https://www.mathnet.ru/eng/tmf/v154/i3/p510
  • This publication is cited in the following 16 articles:
    1. Semikhatov A.M., “Centralizing the Centralizers”, Lie Algebras, Vertex Operator Algebras, and Related Topics, Contemporary Mathematics, 695, ed. Barron K. Jurisich E. Milas A. Misra K., Amer Mathematical Soc, 2017, 239–259  crossref  mathscinet  zmath  isi  scopus
    2. Berenstein A., Greenstein J., “Generalized Joseph'S Decompositions”, C. R. Math., 353:10 (2015), 887–892  crossref  mathscinet  zmath  isi  elib  scopus
    3. A. M. Semikhatov, “Fusion in the entwined category of Yetter–Drinfeld modules of a rank-1 Nichols algebra”, Theoret. and Math. Phys., 173:1 (2012), 1329–1358  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    4. Bushlanov P.V., Gainutdinov A.M., Tipunin I.Yu., “Kazhdan-Lusztig Equivalence and Fusion of Kac Modules in Virasoro Logarithmic Models”, Nucl. Phys. B, 862:1 (2012), 232–269  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    5. Semikhatov A.M. Tipunin I.Yu., “The Nichols Algebra of Screenings”, Commun. Contemp. Math., 14:4 (2012), 1250029  crossref  mathscinet  zmath  isi  elib  scopus
    6. Semikhatov A.M., “Heisenberg Double H(B*) as a Braided Commutative Yetter-Drinfeld Module Algebra Over the Drinfeld Double”, Comm Algebra, 39:5 (2011), 1883–1906  crossref  mathscinet  zmath  isi  elib  scopus
    7. Semikhatov A.M., “A Heisenberg double addition to the logarithmic Kazhdan-Lusztig duality”, Lett. Math. Phys., 92:1 (2010), 81–98  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    8. A. M. Semikhatov, “Quantum s(2)s(2) action on a divided-power quantum plane at even roots of unity”, Theoret. and Math. Phys., 164:1 (2010), 853–868  mathnet  crossref  crossref  adsnasa  isi
    9. Fuchs J., Schweigert Ch., “Hopf algebras and finite tensor categories in conformal field theory”, Revista de La Union Matematica Argentina, 51:2 (2010), 43–90  mathscinet  zmath  isi
    10. G. S. Mutafyan, I. Yu. Tipunin, “Double affine Hecke algebra in logarithmic conformal field theory”, Funct Anal Its Appl, 44:1 (2010), 55  crossref
    11. G. S. Mutafyan, I. Yu. Tipunin, “Double Affine Hecke Algebra in Logarithmic Conformal Field Theory”, Funct. Anal. Appl., 44:1 (2010), 55–64  mathnet  mathnet  crossref  crossref  isi  scopus
    12. A. M. Semikhatov, “A differential U-module algebra for U=¯Uqs(2) at an even root of unity”, Theoret. and Math. Phys., 159:1 (2009), 424–447  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    13. A. M. Gainutdinov, “A generalization of the Verlinde formula in logarithmic conformal field theory”, Theoret. and Math. Phys., 159:2 (2009), 575–586  mathnet  crossref  crossref  mathscinet  zmath  adsnasa  isi
    14. Bushlanov P.V., Feigin B.L., Gainutdinov A.M., Tipunin I.Yu., “Lusztig limit of quantum sl(2) at root of unity and fusion of (1,p) Virasoro logarithmic minimal models”, Nuclear Phys. B, 818:3 (2009), 179–195  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    15. Adamović D., Milas A., “The N=1 triplet vertex operator superalgebras”, Comm. Math. Phys., 288:1 (2009), 225–270  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    16. Semikhatov A.M., “Higher string functions, higher-level Appell functions, and the logarithmic ^sl(2)k/u(1) CFT model”, Comm. Math. Phys., 286:2 (2009), 559–592  crossref  mathscinet  zmath  adsnasa  isi  elib  scopus
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:815
    Full-text PDF :353
    References:129
    First page:7
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025