Abstract:
We show that commutator identities on associative algebras generate solutions
of the linearized versions of integrable equations. In addition, we introduce
a special dressing procedure in a class of integral operators that allows
deriving both the nonlinear integrable equation itself and its Lax pair
from such a commutator identity. The problem of constructing new integrable
nonlinear evolution equations thus reduces to the problem of constructing
commutator identities on associative algebras.
Citation:
A. K. Pogrebkov, “Commutator identities on associative algebras and the integrability of
nonlinear evolution equations”, TMF, 154:3 (2008), 477–491; Theoret. and Math. Phys., 154:3 (2008), 405–417
\Bibitem{Pog08}
\by A.~K.~Pogrebkov
\paper Commutator identities on associative algebras and the integrability of
nonlinear evolution equations
\jour TMF
\yr 2008
\vol 154
\issue 3
\pages 477--491
\mathnet{http://mi.mathnet.ru/tmf6182}
\crossref{https://doi.org/10.4213/tmf6182}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2431558}
\zmath{https://zbmath.org/?q=an:1192.81191}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...154..405P}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 154
\issue 3
\pages 405--417
\crossref{https://doi.org/10.1007/s11232-008-0035-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000254207700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-41049095607}
Linking options:
https://www.mathnet.ru/eng/tmf6182
https://doi.org/10.4213/tmf6182
https://www.mathnet.ru/eng/tmf/v154/i3/p477
This publication is cited in the following 16 articles:
Ge Yi, Rong Hu, Kelei Tian, Ying Xu, “On the dispersionless Davey-Stewartson hierarchy: the tau function, the Riemann-Hilbert problem and the Hamilton-Jacobi theory”, Phys. Scr., 99:5 (2024), 055243
A. K. Pogrebkov, “Equation with a lower negative time number in the Davey–Stewartson hierarchy”, Theoret. and Math. Phys., 221:3 (2024), 2022–2030
A. K. Pogrebkov, “Nonexplicit versions of integrable equations”, Theoret. and Math. Phys., 217:3 (2023), 1907–1913
Xue-Jiao He, Xing Lü, “M-lump solution, soliton solution and rational solution to a (3+1)-dimensional nonlinear model”, Mathematics and Computers in Simulation, 197 (2022), 327
Andrei K. Pogrebkov, “Negative Times of the Davey–Stewartson Integrable Hierarchy”, SIGMA, 17 (2021), 091, 12 pp.
I. T. Habibullin, M. N. Kuznetsova, “A classification algorithm for integrable two-dimensional lattices
via Lie–Rinehart algebras”, Theoret. and Math. Phys., 203:1 (2020), 569–581
A. K. Pogrebkov, “Commutator identities and integrable hierarchies”, Theoret. and Math. Phys., 205:3 (2020), 1585–1592
Habibullin I.T. Kuznetsova M.N. Sakieva A.U., “Integrability Conditions For Two-Dimensional Toda-Like Equations”, J. Phys. A-Math. Theor., 53:39 (2020), 395203
Ufa Math. J., 11:3 (2019), 109–131
M. N. Poptsova, I. T. Habibullin, “Algebraic properties of quasilinear two-dimensional lattices connected with integrability”, Ufa Math. J., 10:3 (2018), 86–105
A. K. Pogrebkov, “Higher Hirota difference equations and their reductions”, Theoret. and Math. Phys., 197:3 (2018), 1779–1796
Ismagil Habibullin, Mariya Poptsova, “Classification of a Subclass of Two-Dimensional Lattices via Characteristic Lie Rings”, SIGMA, 13 (2017), 073, 26 pp.
A. K. Pogrebkov, “Commutator identities on associative algebras, the non-Abelian Hirota difference equation and its reductions”, Theoret. and Math. Phys., 187:3 (2016), 823–834
A. K. Pogrebkov, “Hirota difference equation: Inverse scattering transform, Darboux transformation, and solitons”, Theoret. and Math. Phys., 181:3 (2014), 1585–1598