Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2008, Volume 154, Number 3, Pages 477–491
DOI: https://doi.org/10.4213/tmf6182
(Mi tmf6182)
 

This article is cited in 16 scientific papers (total in 16 papers)

Commutator identities on associative algebras and the integrability of nonlinear evolution equations

A. K. Pogrebkov

Steklov Mathematical Institute, Russian Academy of Sciences
References:
Abstract: We show that commutator identities on associative algebras generate solutions of the linearized versions of integrable equations. In addition, we introduce a special dressing procedure in a class of integral operators that allows deriving both the nonlinear integrable equation itself and its Lax pair from such a commutator identity. The problem of constructing new integrable nonlinear evolution equations thus reduces to the problem of constructing commutator identities on associative algebras.
Keywords: nonlinear evolution equation, Lax pair.
English version:
Theoretical and Mathematical Physics, 2008, Volume 154, Issue 3, Pages 405–417
DOI: https://doi.org/10.1007/s11232-008-0035-6
Bibliographic databases:
Document Type: Article
Language: Russian
Citation: A. K. Pogrebkov, “Commutator identities on associative algebras and the integrability of nonlinear evolution equations”, TMF, 154:3 (2008), 477–491; Theoret. and Math. Phys., 154:3 (2008), 405–417
Citation in format AMSBIB
\Bibitem{Pog08}
\by A.~K.~Pogrebkov
\paper Commutator identities on associative algebras and the integrability of
nonlinear evolution equations
\jour TMF
\yr 2008
\vol 154
\issue 3
\pages 477--491
\mathnet{http://mi.mathnet.ru/tmf6182}
\crossref{https://doi.org/10.4213/tmf6182}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2431558}
\zmath{https://zbmath.org/?q=an:1192.81191}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...154..405P}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 154
\issue 3
\pages 405--417
\crossref{https://doi.org/10.1007/s11232-008-0035-6}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000254207700005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-41049095607}
Linking options:
  • https://www.mathnet.ru/eng/tmf6182
  • https://doi.org/10.4213/tmf6182
  • https://www.mathnet.ru/eng/tmf/v154/i3/p477
  • This publication is cited in the following 16 articles:
    1. Ge Yi, Rong Hu, Kelei Tian, Ying Xu, “On the dispersionless Davey-Stewartson hierarchy: the tau function, the Riemann-Hilbert problem and the Hamilton-Jacobi theory”, Phys. Scr., 99:5 (2024), 055243  crossref
    2. A. K. Pogrebkov, “Equation with a lower negative time number in the Davey–Stewartson hierarchy”, Theoret. and Math. Phys., 221:3 (2024), 2022–2030  mathnet  crossref  crossref  mathscinet  adsnasa
    3. A. K. Pogrebkov, “Nonexplicit versions of integrable equations”, Theoret. and Math. Phys., 217:3 (2023), 1907–1913  mathnet  crossref  crossref  mathscinet  adsnasa
    4. Xue-Jiao He, Xing Lü, “M-lump solution, soliton solution and rational solution to a (3+1)-dimensional nonlinear model”, Mathematics and Computers in Simulation, 197 (2022), 327  crossref
    5. Andrei K. Pogrebkov, “Negative Times of the Davey–Stewartson Integrable Hierarchy”, SIGMA, 17 (2021), 091, 12 pp.  mathnet  crossref  mathscinet
    6. Pogrebkov A.K., “Kadomtsev-Petviashvili Hierarchy: Negative Times”, Mathematics, 9:16 (2021), 1988  crossref  isi
    7. I. T. Habibullin, M. N. Kuznetsova, “A classification algorithm for integrable two-dimensional lattices via Lie–Rinehart algebras”, Theoret. and Math. Phys., 203:1 (2020), 569–581  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    8. A. K. Pogrebkov, “Commutator identities and integrable hierarchies”, Theoret. and Math. Phys., 205:3 (2020), 1585–1592  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    9. Habibullin I.T. Kuznetsova M.N. Sakieva A.U., “Integrability Conditions For Two-Dimensional Toda-Like Equations”, J. Phys. A-Math. Theor., 53:39 (2020), 395203  crossref  mathscinet  isi
    10. Ufa Math. J., 11:3 (2019), 109–131  mathnet  crossref  isi
    11. M. N. Poptsova, I. T. Habibullin, “Algebraic properties of quasilinear two-dimensional lattices connected with integrability”, Ufa Math. J., 10:3 (2018), 86–105  mathnet  crossref  isi
    12. A. K. Pogrebkov, “Higher Hirota difference equations and their reductions”, Theoret. and Math. Phys., 197:3 (2018), 1779–1796  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    13. Ismagil Habibullin, Mariya Poptsova, “Classification of a Subclass of Two-Dimensional Lattices via Characteristic Lie Rings”, SIGMA, 13 (2017), 073, 26 pp.  mathnet  crossref
    14. A. K. Pogrebkov, “Commutator identities on associative algebras, the non-Abelian Hirota difference equation and its reductions”, Theoret. and Math. Phys., 187:3 (2016), 823–834  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib  elib
    15. A. K. Pogrebkov, “Hirota difference equation: Inverse scattering transform, Darboux transformation, and solitons”, Theoret. and Math. Phys., 181:3 (2014), 1585–1598  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    16. St. Petersburg Math. J., 22:3 (2011), 473–483  mathnet  crossref  mathscinet  zmath  isi
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:616
    Full-text PDF :242
    References:66
    First page:8
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025