|
This article is cited in 26 scientific papers (total in 26 papers)
Quantum Knizhnik–Zamolodchikov equation, totally symmetric
self-complementary plane partitions, and alternating sign matrices
P. Zinn-Justina, Ph. Di Francescob a Laboratoire de Physique Théorique et Modèles Statistiques, Univ Paris-Sud, Orsay, France
b Service de Physique Théorique de Saclay, Gif sur Yvette Cedex, France
Abstract:
We present multiple-residue integral formulas for partial sums in the basis
of link patterns of the polynomial solution of the level-$1$
$U_q(\widehat{\mathfrak{sl}_2})$ quantum Knizhnik–Zamolodchikov equation at arbitrary
values of the quantum parameter $q$. These formulas allow rewriting and
generalizing a recent conjecture of Di Francesco connecting these sums to
generating polynomials for weighted totally symmetric self-complementary
plane partitions. We reduce the corresponding conjectures to a single
integral identity, yet to be proved.
Keywords:
loop model, combinatorics, quantum integrability.
Citation:
P. Zinn-Justin, Ph. Di Francesco, “Quantum Knizhnik–Zamolodchikov equation, totally symmetric
self-complementary plane partitions, and alternating sign matrices”, TMF, 154:3 (2008), 387–408; Theoret. and Math. Phys., 154:3 (2008), 331–348
Linking options:
https://www.mathnet.ru/eng/tmf6178https://doi.org/10.4213/tmf6178 https://www.mathnet.ru/eng/tmf/v154/i3/p387
|
Statistics & downloads: |
Abstract page: | 912 | Full-text PDF : | 256 | References: | 83 | First page: | 4 |
|