Abstract:
We describe a method for integrating the Toda lattice with a self-consistent
source using the inverse scattering method for a discrete Sturm–Liouville
operator with moving eigenvalues.
Keywords:
Toda lattice, self-consistent source, inverse scattering method, moving eigenvalues.
Citation:
G. U. Urazboev, “Toda lattice with a special self-consistent source”, TMF, 154:2 (2008), 305–315; Theoret. and Math. Phys., 154:2 (2008), 260–269
This publication is cited in the following 9 articles:
B. A. Babajanov, M. M. Ruzmetov, “Solution of the Finite Toda Lattice with Self-Consistent Source”, Lobachevskii J Math, 44:7 (2023), 2587
B.A. Babajanov, M.M. Ruzmetov, Sh.O. Sadullaev, “Integration of the finite complex Toda lattice with a self-consistent source”, Partial Differential Equations in Applied Mathematics, 7 (2023), 100510
B. A. Babajanov, M. M. Ruzmetov, “On the construction and integration of a hierarchy for the periodic Toda lattice with a self-consistent source”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 38 (2021), 3–18
Bazar Babajanov, Azizbek Azamatov, Alisher Babajonov, “Solving the Periodic Toda-Type Chain with a Self-Consistent Source”, J. Basic Appl. Sci., 16 (2020), 43
B. A. Babajanov, Springer Proceedings in Mathematics & Statistics, 264, Algebra, Complex Analysis, and Pluripotential Theory, 2018, 45
Babajanov B. Feckan M. Urazboev G., “On the Periodic Toda Lattice With a Self-Consistent Source”, Commun. Nonlinear Sci. Numer. Simul., 22:1-3 (2015), 1223–1234
B. A. Babajanov, A. B. Khasanov, “Periodic Toda chain with an integral source”, Theoret. and Math. Phys., 184:2 (2015), 1114–1128
Urazboev G., “Integrating the Toda Lattice with Self-Consistent Source via Inverse Scattering Method”, Math. Phys. Anal. Geom., 15:4 (2012), 401–412
A. Kh. Khanmamedov, “The Cauchy problem for a semi-infinite Volterra chain with an asymptotically periodic initial condition”, Siberian Math. J., 51:2 (2010), 346–356