Loading [MathJax]/jax/output/SVG/config.js
Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2008, Volume 154, Number 2, Pages 305–315
DOI: https://doi.org/10.4213/tmf6171
(Mi tmf6171)
 

This article is cited in 9 scientific papers (total in 9 papers)

Toda lattice with a special self-consistent source

G. U. Urazboev

Al-Kharezmi Urgench State University, Khorezm, Uzbekistan
Full-text PDF (396 kB) Citations (9)
References:
Abstract: We describe a method for integrating the Toda lattice with a self-consistent source using the inverse scattering method for a discrete Sturm–Liouville operator with moving eigenvalues.
Keywords: Toda lattice, self-consistent source, inverse scattering method, moving eigenvalues.
Received: 15.03.2007
English version:
Theoretical and Mathematical Physics, 2008, Volume 154, Issue 2, Pages 260–269
DOI: https://doi.org/10.1007/s11232-008-0025-8
Bibliographic databases:
Language: Russian
Citation: G. U. Urazboev, “Toda lattice with a special self-consistent source”, TMF, 154:2 (2008), 305–315; Theoret. and Math. Phys., 154:2 (2008), 260–269
Citation in format AMSBIB
\Bibitem{Ura08}
\by G.~U.~Urazboev
\paper Toda lattice with a~special self-consistent source
\jour TMF
\yr 2008
\vol 154
\issue 2
\pages 305--315
\mathnet{http://mi.mathnet.ru/tmf6171}
\crossref{https://doi.org/10.4213/tmf6171}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2424010}
\zmath{https://zbmath.org/?q=an:1155.37040}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...154..260U}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 154
\issue 2
\pages 260--269
\crossref{https://doi.org/10.1007/s11232-008-0025-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000253216500009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-39349083319}
Linking options:
  • https://www.mathnet.ru/eng/tmf6171
  • https://doi.org/10.4213/tmf6171
  • https://www.mathnet.ru/eng/tmf/v154/i2/p305
  • This publication is cited in the following 9 articles:
    1. B. A. Babajanov, M. M. Ruzmetov, “Solution of the Finite Toda Lattice with Self-Consistent Source”, Lobachevskii J Math, 44:7 (2023), 2587  crossref
    2. B.A. Babajanov, M.M. Ruzmetov, Sh.O. Sadullaev, “Integration of the finite complex Toda lattice with a self-consistent source”, Partial Differential Equations in Applied Mathematics, 7 (2023), 100510  crossref
    3. B. A. Babajanov, M. M. Ruzmetov, “On the construction and integration of a hierarchy for the periodic Toda lattice with a self-consistent source”, Izvestiya Irkutskogo gosudarstvennogo universiteta. Seriya Matematika, 38 (2021), 3–18  mathnet  crossref
    4. Bazar Babajanov, Azizbek Azamatov, Alisher Babajonov, “Solving the Periodic Toda-Type Chain with a Self-Consistent Source”, J. Basic Appl. Sci., 16 (2020), 43  crossref
    5. B. A. Babajanov, Springer Proceedings in Mathematics & Statistics, 264, Algebra, Complex Analysis, and Pluripotential Theory, 2018, 45  crossref
    6. Babajanov B. Feckan M. Urazboev G., “On the Periodic Toda Lattice With a Self-Consistent Source”, Commun. Nonlinear Sci. Numer. Simul., 22:1-3 (2015), 1223–1234  crossref  mathscinet  zmath  adsnasa  isi  scopus
    7. B. A. Babajanov, A. B. Khasanov, “Periodic Toda chain with an integral source”, Theoret. and Math. Phys., 184:2 (2015), 1114–1128  mathnet  crossref  crossref  mathscinet  adsnasa  isi  elib
    8. Urazboev G., “Integrating the Toda Lattice with Self-Consistent Source via Inverse Scattering Method”, Math. Phys. Anal. Geom., 15:4 (2012), 401–412  crossref  mathscinet  zmath  isi  scopus
    9. A. Kh. Khanmamedov, “The Cauchy problem for a semi-infinite Volterra chain with an asymptotically periodic initial condition”, Siberian Math. J., 51:2 (2010), 346–356  mathnet  crossref  mathscinet  isi  elib  elib
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:600
    Full-text PDF :240
    References:97
    First page:6
     
      Contact us:
    math-net2025_04@mi-ras.ru
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2025