Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2008, Volume 154, Number 1, Pages 164–182
DOI: https://doi.org/10.4213/tmf6158
(Mi tmf6158)
 

This article is cited in 1 scientific paper (total in 1 paper)

Asymmetric Hubbard model in the generating functional method: Spectral functions in the Falicov–Kimball limit

I. V. Stasyuk, O. B. Gera

Institute for Condensed Matter Physics, National Academy of Sciences of Ukraine
Full-text PDF (855 kB) Citations (1)
References:
Abstract: In the framework of the dynamical mean field theory, we investigate the densities of states of the fermionic and bosonic branches of the spectrum of the asymmetric Hubbard model, which is used to describe a strongly correlated two-sort $(A,B)$ system of fermions (electrons). To solve the effective one-site problem, we develop an approximate analytic approach based on the Kadanoff–Baym generating functional method. This technique allows constructing the irreducible part (the mass operator) of the particle Green's function in the form of a formal expansion in powers of the coherent potential. In the first order, the scheme reproduces the so-called generalized approximation Hubbard-III. To improve it, we develop a self-consistent method for calculating both the fermionic and bosonic Green's functions. As $U\to\infty$ in the Falicov–Kimball limit for the asymmetric Hubbard model, when the particles of sort $B$ become localized, we find the spectral densities $\rho_B$ and $\rho_{AB}$ of states of both branches and consider the changes of their forms depending on temperature and particle concentrations. Comparing with the exact thermodynamic dependences $\mu_B(n_B)$, we establish the applicability limits of the self-consistent generalized approximation Hubbard-III.
Keywords: strongly correlated system, asymmetric Hubbard model, dynamical mean field, generating functional, spectral function.
Received: 15.06.2007
English version:
Theoretical and Mathematical Physics, 2008, Volume 154, Issue 1, Pages 137–152
DOI: https://doi.org/10.1007/s11232-008-0012-0
Bibliographic databases:
Language: Russian
Citation: I. V. Stasyuk, O. B. Gera, “Asymmetric Hubbard model in the generating functional method: Spectral functions in the Falicov–Kimball limit”, TMF, 154:1 (2008), 164–182; Theoret. and Math. Phys., 154:1 (2008), 137–152
Citation in format AMSBIB
\Bibitem{StaGer08}
\by I.~V.~Stasyuk, O.~B.~Gera
\paper Asymmetric Hubbard model in the~generating functional method: Spectral
functions in the~Falicov--Kimball limit
\jour TMF
\yr 2008
\vol 154
\issue 1
\pages 164--182
\mathnet{http://mi.mathnet.ru/tmf6158}
\crossref{https://doi.org/10.4213/tmf6158}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2389434}
\zmath{https://zbmath.org/?q=an:1147.82011}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...154..137S}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 154
\issue 1
\pages 137--152
\crossref{https://doi.org/10.1007/s11232-008-0012-0}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000252642500011}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38849165446}
Linking options:
  • https://www.mathnet.ru/eng/tmf6158
  • https://doi.org/10.4213/tmf6158
  • https://www.mathnet.ru/eng/tmf/v154/i1/p164
  • This publication is cited in the following 1 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024