Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2008, Volume 154, Number 1, Pages 113–128
DOI: https://doi.org/10.4213/tmf6155
(Mi tmf6155)
 

This article is cited in 5 scientific papers (total in 5 papers)

Microscopic theory of superconductivity in $\text{MgB}_2$-type systems in a magnetic field: A neighborhood of $H_{\text{c}2}$

V. A. Moskalenko, M. E. Palistrant, V. A. Ursu

Institute of Applied Physics Academy of Sciences of Moldova
Full-text PDF (552 kB) Citations (5)
References:
Abstract: We calculate the upper critical magnetic field $H_{\mathrm{c} 2}$ in the framework of a microscopic superconductivity theory with two energy bands of different dimensions on the Fermi surface with the cavity topology typical of the compound $\mathrm{MgB}_2$ taken into account (an anisotropic system). We assume an external magnetic field parallel to the crystallographic $z$ axis. We obtain analytic formulas in the low-temperature range $(T/T_{\mathrm{c}}\ll1)$ and also near the critical temperature $\bigl((T-T_{\mathrm{c}})/T_{\mathrm{c}}\ll1\bigr)$. We compare the temperature dependence of $H_{\mathrm{c} 2}$ for a two-band anisotropic system with that of $H_{\mathrm{c} 2}^0$ corresponding to a two-band isotropic system (with Fermi-surface cavities of the same topology). We determine the role of the band-structure anisotropy, the positive curvature of the upper critical field near the critical temperature, and the important role of the ratio $v_1/v_2$ of the velocities on the Fermi surface in determining $H_{\mathrm{c} 2}$. We also obtain the values of the parameters $\Delta_1$ and $\Delta_2$ along the line of the critical magnetic field.
Keywords: two-band superconductivity, upper critical field, anisotropy.
Received: 24.05.2007
English version:
Theoretical and Mathematical Physics, 2008, Volume 154, Issue 1, Pages 94–107
DOI: https://doi.org/10.1007/s11232-008-0009-8
Bibliographic databases:
Language: Russian
Citation: V. A. Moskalenko, M. E. Palistrant, V. A. Ursu, “Microscopic theory of superconductivity in $\text{MgB}_2$-type systems in a magnetic field: A neighborhood of $H_{\text{c}2}$”, TMF, 154:1 (2008), 113–128; Theoret. and Math. Phys., 154:1 (2008), 94–107
Citation in format AMSBIB
\Bibitem{MosPalUrs08}
\by V.~A.~Moskalenko, M.~E.~Palistrant, V.~A.~Ursu
\paper Microscopic theory of superconductivity in $\text{MgB}_2$-type systems
in a~magnetic field: A~neighborhood of $H_{\text{c}2}$
\jour TMF
\yr 2008
\vol 154
\issue 1
\pages 113--128
\mathnet{http://mi.mathnet.ru/tmf6155}
\crossref{https://doi.org/10.4213/tmf6155}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2389431}
\zmath{https://zbmath.org/?q=an:1176.82052}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2008TMP...154...94M}
\transl
\jour Theoret. and Math. Phys.
\yr 2008
\vol 154
\issue 1
\pages 94--107
\crossref{https://doi.org/10.1007/s11232-008-0009-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000252642500008}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-38549095582}
Linking options:
  • https://www.mathnet.ru/eng/tmf6155
  • https://doi.org/10.4213/tmf6155
  • https://www.mathnet.ru/eng/tmf/v154/i1/p113
  • This publication is cited in the following 5 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024