Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2007, Volume 153, Number 3, Pages 381–387
DOI: https://doi.org/10.4213/tmf6143
(Mi tmf6143)
 

This article is cited in 10 scientific papers (total in 10 papers)

Positivity of the two-particle Hamiltonian on a lattice

M. I. Muminov

A. Navoi Samarkand State University
References:
Abstract: We consider a two-particle Hamiltonian on the $d$-dimensional lattice $\mathbb Z^d$. We find a sufficient condition for the positivity of a family of operators $h(k)$ appearing after the "separation of the center of mass" of a system of two particles depending on the values of the total quasimomentum $k\in T^d$ (where $T^d$ is a $d$-dimensional torus). We use the obtained result to show that the operator $h(k)$ has positive eigenvalues for nonzero $k\in T^d$.
Keywords: two-particle Hamiltonian on a lattice, virtual level, regular point, positive operator, discrete spectrum.
Received: 15.01.2007
Revised: 02.05.2007
English version:
Theoretical and Mathematical Physics, 2007, Volume 153, Issue 3, Pages 1671–1676
DOI: https://doi.org/10.1007/s11232-007-0139-4
Bibliographic databases:
Language: Russian
Citation: M. I. Muminov, “Positivity of the two-particle Hamiltonian on a lattice”, TMF, 153:3 (2007), 381–387; Theoret. and Math. Phys., 153:3 (2007), 1671–1676
Citation in format AMSBIB
\Bibitem{Mum07}
\by M.~I.~Muminov
\paper Positivity of the two-particle Hamiltonian on a lattice
\jour TMF
\yr 2007
\vol 153
\issue 3
\pages 381--387
\mathnet{http://mi.mathnet.ru/tmf6143}
\crossref{https://doi.org/10.4213/tmf6143}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2389409}
\zmath{https://zbmath.org/?q=an:1144.81459}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...153.1671M}
\elib{https://elibrary.ru/item.asp?id=10438463}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 153
\issue 3
\pages 1671--1676
\crossref{https://doi.org/10.1007/s11232-007-0139-4}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000251830600005}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-37749049505}
Linking options:
  • https://www.mathnet.ru/eng/tmf6143
  • https://doi.org/10.4213/tmf6143
  • https://www.mathnet.ru/eng/tmf/v153/i3/p381
  • This publication is cited in the following 10 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:537
    Full-text PDF :225
    References:90
    First page:1
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024