Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2007, Volume 153, Number 2, Pages 220–261
DOI: https://doi.org/10.4213/tmf6136
(Mi tmf6136)
 

This article is cited in 12 scientific papers (total in 12 papers)

Ising model in half-space: A series of phase transitions in low magnetic fields

A. G. Basuev

St. Petersburg State University of Technology and Design
References:
Abstract: For the Ising model in half-space at low temperatures and for the “unstable boundary condition,” we prove that for each value of the external magnetic field $\mu$, there exists a spin layer of thickness $q(\mu)$ adjacent to the substrate such that the mean spin is close to $-1$ inside this layer and close to $+1$ outside it. As $\mu$ decreases, the thickness of the $(-1)$-spin layer changes jumpwise by unity at the points $\mu_q$, and $q(\mu)\to\infty$ as $\mu\to+0$. At the discontinuity points $\mu_q$ of $q(\mu)$, two surface phases coexist. The surface free energy is piecewise analytic in the domain $\operatorname{Re}\mu>0$ and at low temperatures. We consider the Ising model in half-space with an arbitrary external field in the zeroth layer and investigate the corresponding phase diagram. We prove Antonov's rule and construct the equation of state in lower orders with the precision of $x^7$, $x=e^{-2\varepsilon}$. In particular, with this precision, we find the points of coexistence of the phases $0,1,2$ and the phases $0,2,3$, where the phase numbers correspond to the height of the layer of unstable spins over the substrate.
Received: 29.09.2006
Revised: 20.03.2007
English version:
Theoretical and Mathematical Physics, 2007, Volume 153, Issue 2, Pages 1539–1574
DOI: https://doi.org/10.1007/s11232-007-0132-y
Bibliographic databases:
Language: Russian
Citation: A. G. Basuev, “Ising model in half-space: A series of phase transitions in low magnetic fields”, TMF, 153:2 (2007), 220–261; Theoret. and Math. Phys., 153:2 (2007), 1539–1574
Citation in format AMSBIB
\Bibitem{Bas07}
\by A.~G.~Basuev
\paper Ising model in half-space: A series of phase transitions in low
magnetic fields
\jour TMF
\yr 2007
\vol 153
\issue 2
\pages 220--261
\mathnet{http://mi.mathnet.ru/tmf6136}
\crossref{https://doi.org/10.4213/tmf6136}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2388585}
\zmath{https://zbmath.org/?q=an:1139.82309}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...153.1539B}
\elib{https://elibrary.ru/item.asp?id=10438456}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 153
\issue 2
\pages 1539--1574
\crossref{https://doi.org/10.1007/s11232-007-0132-y}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000251154200004}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-36549042560}
Linking options:
  • https://www.mathnet.ru/eng/tmf6136
  • https://doi.org/10.4213/tmf6136
  • https://www.mathnet.ru/eng/tmf/v153/i2/p220
  • This publication is cited in the following 12 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:679
    Full-text PDF :252
    References:72
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024