Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2007, Volume 153, Number 1, Pages 124–129
DOI: https://doi.org/10.4213/tmf6125
(Mi tmf6125)
 

Correlation functions in the anomalous-dimension approximation for a multicomponent liquid

A. N. Vasiliev

National Taras Shevchenko University of Kyiv
References:
Abstract: We analyze the features of solutions for pair correlation functions in the case of a multicomponent liquid. We obtain these solutions based on the Ornstein–Zernike equation. In the anomalous-dimension approximation, we find expressions for pair correlation functions in the case of a spatially unbounded multicomponent liquid. We show that all pair correlation functions for a system in the close vicinity of the critical state are described by a general expression similar to the expression for a pair correlation function in the case of a one-component liquid.
Keywords: multicomponent system, correlation function, critical state, critical index, anomalous dimension.
Received: 03.11.2006
Revised: 25.01.2007
English version:
Theoretical and Mathematical Physics, 2007, Volume 153, Issue 1, Pages 1458–1462
DOI: https://doi.org/10.1007/s11232-007-0127-8
Bibliographic databases:
Language: Russian
Citation: A. N. Vasiliev, “Correlation functions in the anomalous-dimension approximation for a multicomponent liquid”, TMF, 153:1 (2007), 124–129; Theoret. and Math. Phys., 153:1 (2007), 1458–1462
Citation in format AMSBIB
\Bibitem{Vas07}
\by A.~N.~Vasiliev
\paper Correlation functions in the~anomalous-dimension approximation for a~multicomponent liquid
\jour TMF
\yr 2007
\vol 153
\issue 1
\pages 124--129
\mathnet{http://mi.mathnet.ru/tmf6125}
\crossref{https://doi.org/10.4213/tmf6125}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2402240}
\zmath{https://zbmath.org/?q=an:1139.82322}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...153.1458V}
\elib{https://elibrary.ru/item.asp?id=9918152}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 153
\issue 1
\pages 1458--1462
\crossref{https://doi.org/10.1007/s11232-007-0127-8}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000250783100009}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-35448940908}
Linking options:
  • https://www.mathnet.ru/eng/tmf6125
  • https://doi.org/10.4213/tmf6125
  • https://www.mathnet.ru/eng/tmf/v153/i1/p124
  • Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:461
    Full-text PDF :236
    References:50
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024