Teoreticheskaya i Matematicheskaya Fizika
RUS  ENG    JOURNALS   PEOPLE   ORGANISATIONS   CONFERENCES   SEMINARS   VIDEO LIBRARY   PACKAGE AMSBIB  
General information
Latest issue
Archive
Impact factor
Guidelines for authors
License agreement
Submit a manuscript

Search papers
Search references

RSS
Latest issue
Current issues
Archive issues
What is RSS



TMF:
Year:
Volume:
Issue:
Page:
Find






Personal entry:
Login:
Password:
Save password
Enter
Forgotten password?
Register


Teoreticheskaya i Matematicheskaya Fizika, 2007, Volume 153, Number 1, Pages 86–97
DOI: https://doi.org/10.4213/tmf6123
(Mi tmf6123)
 

This article is cited in 22 scientific papers (total in 22 papers)

Potts model with competing interactions on the Cayley tree: The contour method

G. I. Botirova, U. A. Rozikovb

a National University of Uzbekistan named after M. Ulugbek
b Romanovskii Mathematical Institute of the National Academy of Sciences of Uzbekistan
References:
Abstract: We consider the Potts model with three spin values and with competing interactions of radius $r=2$ on the Cayley tree of order $k=2$. We completely describe the ground states of this model and use the contour method on the tree to prove that this model has three Gibbs measures at sufficiently low temperatures.
Keywords: Cayley tree, configuration, contour method, ground state, Gibbs measure.
Received: 11.12.2006
English version:
Theoretical and Mathematical Physics, 2007, Volume 153, Issue 1, Pages 1423–1433
DOI: https://doi.org/10.1007/s11232-007-0125-x
Bibliographic databases:
Language: Russian
Citation: G. I. Botirov, U. A. Rozikov, “Potts model with competing interactions on the Cayley tree: The contour method”, TMF, 153:1 (2007), 86–97; Theoret. and Math. Phys., 153:1 (2007), 1423–1433
Citation in format AMSBIB
\Bibitem{BotRoz07}
\by G.~I.~Botirov, U.~A.~Rozikov
\paper Potts model with competing interactions on the~Cayley tree: The~contour method
\jour TMF
\yr 2007
\vol 153
\issue 1
\pages 86--97
\mathnet{http://mi.mathnet.ru/tmf6123}
\crossref{https://doi.org/10.4213/tmf6123}
\mathscinet{http://mathscinet.ams.org/mathscinet-getitem?mr=2402238}
\zmath{https://zbmath.org/?q=an:1157.82308}
\adsnasa{https://adsabs.harvard.edu/cgi-bin/bib_query?2007TMP...153.1423B}
\elib{https://elibrary.ru/item.asp?id=9918150}
\transl
\jour Theoret. and Math. Phys.
\yr 2007
\vol 153
\issue 1
\pages 1423--1433
\crossref{https://doi.org/10.1007/s11232-007-0125-x}
\isi{https://gateway.webofknowledge.com/gateway/Gateway.cgi?GWVersion=2&SrcApp=Publons&SrcAuth=Publons_CEL&DestLinkType=FullRecord&DestApp=WOS_CPL&KeyUT=000250783100007}
\scopus{https://www.scopus.com/record/display.url?origin=inward&eid=2-s2.0-35448981473}
Linking options:
  • https://www.mathnet.ru/eng/tmf6123
  • https://doi.org/10.4213/tmf6123
  • https://www.mathnet.ru/eng/tmf/v153/i1/p86
  • This publication is cited in the following 22 articles:
    Citing articles in Google Scholar: Russian citations, English citations
    Related articles in Google Scholar: Russian articles, English articles
    Теоретическая и математическая физика Theoretical and Mathematical Physics
    Statistics & downloads:
    Abstract page:624
    Full-text PDF :281
    References:81
    First page:3
     
      Contact us:
     Terms of Use  Registration to the website  Logotypes © Steklov Mathematical Institute RAS, 2024